首页> 美国卫生研究院文献>APL Bioengineering >Time dependent stress relaxation and recovery in mechanically strained 3D microtissues
【2h】

Time dependent stress relaxation and recovery in mechanically strained 3D microtissues

机译:机械紧张3D微发布中的时间依赖应力松弛和恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Characterizing the time-dependent mechanical properties of cells is not only necessary to determine how they deform but also to understand how external forces trigger biochemical-signaling cascades to govern their behavior. At present, mechanical properties are largely assessed by applying local shear or compressive forces on single cells grown in isolation on non-physiological 2D surfaces. In comparison, we developed the microfabricated vacuum actuated stretcher to measure tensile loading of 3D multicellular “microtissue” cultures. Using this approach, we here assessed the time-dependent stress relaxation and recovery responses of microtissues and quantified the spatial viscoelastic deformation following step length changes. Unlike previous results, stress relaxation and recovery in microtissues measured over a range of step amplitudes and pharmacological treatments followed an augmented stretched exponential behavior describing a broad distribution of inter-related timescales. Furthermore, despite the variety of experimental conditions, all responses led to a single linear relationship between the residual elastic stress and the degree of stress relaxation, suggesting that these mechanical properties are coupled through interactions between structural elements and the association of cells with their matrix. Finally, although stress relaxation could be quantitatively and spatially linked to recovery, they differed greatly in their dynamics; while stress recovery acted as a linear process, relaxation time constants changed with an inverse power law with the step size. This assessment of microtissues offers insights into how the collective behavior of cells in a 3D collagen matrix generates the dynamic mechanical properties of tissues, which is necessary to understand how cells deform and sense mechanical forces in vivo.
机译:表征细胞的时间依赖性机械性质不仅需要确定它们的变形,还要了解外部力如何触发生物化学信令级联来管理其行为。目前,通过在非生理2D表面上分离生长的单细胞上施加局部剪切或压缩力来大量评估机械性能。相比之下,我们开发了微制造的真空致动担架,以测量3D多细胞“微辐射”培养物的拉伸负载。使用这种方法,我们在这里评估了微发射的时间依赖性应力松弛和恢复响应,并量化了步长改变后的空间粘弹性变形。与先前的结果不同,在一系列步进幅度和药理学处理中测量的微囊中的应力松弛和恢复,然后是增强的拉伸指数行为,其描述了与相关的间隔间的广泛分布。此外,尽管各种实验条件,但所有响应都导致了残余弹性应力和应力弛豫度之间的单个线性关系,表明这些机械性能通过结构元素与细胞与其基质的关联之间的相互作用而偶联。最后,虽然压力松弛可以定量和空间地连接到恢复,但它们在其动态中有很大差异;虽然压力恢复充当线性过程,但弛豫时间常数随着逆动力法的变化,具有阶梯尺寸。这种微观调查的评估提供了探讨3D胶原基质中细胞中的集体行为如何产生组织的动态力学性质,这对于了解细胞在体内变形和感测机械力的情况是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号