首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Regulation of F0F1-ATPase from Synechocystis sp. PCC 6803 by γ and ϵ Subunits Is Significant for Light/Dark Adaptation
【2h】

Regulation of F0F1-ATPase from Synechocystis sp. PCC 6803 by γ and ϵ Subunits Is Significant for Light/Dark Adaptation

机译:突囊藻sp。F0F1-ATPase的调控γ和ϵ亚基的PCC 6803对亮/暗适应具有重要意义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The γ and ϵ subunits of F0F1-ATP synthase from photosynthetic organisms display unique properties not found in other organisms. Although the γ subunit of both chloroplast and cyanobacterial F0F1 contains an extra amino acid segment whose deletion results in a high ATP hydrolysis activity (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., Sugano, Y., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855–865), its ϵ subunit strongly inhibits ATP hydrolysis activity. To understand the physiological significance of these phenomena, we studied mutant strains with (i) a C-terminally truncated ϵ (ϵΔC), (ii) γ lacking the inserted sequence (γΔ198–222), and (iii) a double mutation of (i) and (ii) in Synechocystis sp. PCC 6803. Although thylakoid membranes from the ϵΔC strain showed higher ATP hydrolysis and lower ATP synthesis activities than those of the wild type, no significant difference was observed in growth rate and in intracellular ATP level both under light conditions and during light-dark cycles. However, both the ϵΔC and γΔ198–222 and the double mutant strains showed a lower intracellular ATP level and lower cell viability under prolonged dark incubation compared with the wild type. These data suggest that internal inhibition of ATP hydrolysis activity is very important for cyanobacteria that are exposed to prolonged dark adaptation and, in general, for the survival of photosynthetic organisms in an ever-changing environment.
机译:来自光合生物的F0F1-ATP合酶的γ和and亚基显示出其他生物中未发现的独特特性。尽管叶绿体和蓝细菌F0F1的γ亚基都含有一个额外的氨基酸片段,其缺失会导致较高的ATP水解活性(Sunamura,E.,Konno,H.,Imashimizu-Kobayashi,M.,Sugano,Y.和Hisabori ,T。(2010)Plant Cell Physiol。51,855–865),其ϵ亚基强烈抑制ATP水解活性。为了解这些现象的生理学意义,我们研究了具有以下突变体的菌株:(i)C端截短的ϵ(ϵΔC),(ii)缺少插入序列的γ(γΔ198-222),和(iii)双重突变i)和(ii)在Synechocystis sp。 PCC 6803.尽管来自ΔΔC菌株的类囊体膜显示出比野生型更高的ATP水解和更低的ATP合成活性,但是在光条件下和光-暗循环中,生长速率和细胞内ATP水平均未观察到显着差异。然而,与野生型相比,underΔC和γΔ198-222以及双重突变菌株在长时间的黑暗温育下均显示出较低的细胞内ATP水平和较低的细胞活力。这些数据表明,ATP水解活性的内部抑制对于长时间暴露于暗适应的蓝细菌非常重要,并且通常对于光合作用生物在不断变化的环境中的生存非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号