首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Chemical Kinetic Analysis of Thermal Decay of Rhodopsin Reveals Unusual Energetics of Thermal Isomerization and Hydrolysis of Schiff Base
【2h】

Chemical Kinetic Analysis of Thermal Decay of Rhodopsin Reveals Unusual Energetics of Thermal Isomerization and Hydrolysis of Schiff Base

机译:视紫红质热衰变的化学动力学分析揭示了席夫碱热异构化和水解的异常能量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thermal properties of rhodopsin, which set the threshold of our vision, have long been investigated, but the chemical kinetics of the thermal decay of rhodopsin has not been revealed in detail. To understand thermal decay quantitatively, we propose a kinetic model consisting of two pathways: 1) thermal isomerization of 11-cis-retinal followed by hydrolysis of Schiff base (SB) and 2) hydrolysis of SB in dark state rhodopsin followed by opsin-catalyzed isomerization of free 11-cis-retinal. We solve the kinetic model mathematically and use it to analyze kinetic data from four experiments that we designed to assay thermal decay, isomerization, hydrolysis of SB using dark state rhodopsin, and hydrolysis of SB using photoactivated rhodopsin. We apply the model to WT rhodopsin and E181Q and S186A mutants at 55 °C, as well as WT rhodopsin in H2O and D2O at 59 °C. The results show that the hydrogen-bonding network strongly restrains thermal isomerization but is less important in opsin and activated rhodopsin. Furthermore, the ability to obtain individual rate constants allows comparison of thermal processes under various conditions. Our kinetic model and experiments reveal two unusual energetic properties: the steep temperature dependence of the rates of thermal isomerization and SB hydrolysis in the dark state and a strong deuterium isotope effect on dark state SB hydrolysis. These findings can be applied to study pathogenic rhodopsin mutants and other visual pigments.
机译:视紫红质的热学性质已设定了我们的视力阈值,对此进行了长期研究,但尚未详细揭示视紫红质的热衰变的化学动力学。为了定量地了解热衰减,我们提出了一个由两个途径组成的动力学模型:1)11-顺式-视网膜的热异构化,然后水解席夫碱(SB),2)在黑暗状态视紫红质中水解SB,然后视蛋白催化的11-顺-视网膜的异构化。我们用数学方法求解动力学模型,并使用它来分析四个实验的动力学数据,这些实验旨在分析热衰减,异构化,使用暗态视紫红质水解SB和使用光活化视紫红质水解SB。我们将该模型应用于WT视紫红质和E181Q和S186A突变体,温度为55°C,以及WT视紫红质在H2O和D2O中,温度为59°C。结果表明,氢键网络强烈地抑制了热异构化,但在视蛋白和活化的视紫红质中作用不大。此外,获得各个速率常数的能力允许比较各种条件下的热过程。我们的动力学模型和实验揭示了两个不同寻常的能量特性:在黑暗状态下热异构化和SB水解速率的陡峭温度依赖性以及对黑暗状态SB水解的强氘同位素效应。这些发现可用于研究致病性视紫红质突变体和其他视觉色素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号