首页> 美国卫生研究院文献>Computational and Structural Biotechnology Journal >Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design
【2h】

Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design

机译:蛋白质静电方法:从计算和结构分析到发现功能指纹和生物技术设计的发现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computationally driven engineering of proteins aims to allow them to withstand an extended range of conditions and to mediate modified or novel functions. Therefore, it is crucial to the biotechnological industry, to biomedicine and to afford new challenges in environmental sciences, such as biocatalysis for green chemistry and bioremediation. In order to achieve these goals, it is important to clarify molecular mechanisms underlying proteins stability and modulating their interactions. So far, much attention has been given to hydrophobic and polar packing interactions and stability of the protein core. In contrast, the role of electrostatics and, in particular, of surface interactions has received less attention. However, electrostatics plays a pivotal role along the whole life cycle of a protein, since early folding steps to maturation, and it is involved in the regulation of protein localization and interactions with other cellular or artificial molecules. Short- and long-range electrostatic interactions, together with other forces, provide essential guidance cues in molecular and macromolecular assembly. We report here on methods for computing protein electrostatics and for individual or comparative analysis able to sort proteins by electrostatic similarity. Then, we provide examples of electrostatic analysis and fingerprints in natural protein evolution and in biotechnological design, in fields as diverse as biocatalysis, antibody and nanobody engineering, drug design and delivery, molecular virology, nanotechnology and regenerative medicine.
机译:蛋白质的计算驱动工程旨在允许它们能够承受扩展范围的条件和介导修改或新功能。因此,它对生物技术行业至关重要,生物医学,在环境科学中提供新的挑战,例如生物化学和生物修复的生物分析。为了实现这些目标,重要的是阐明蛋白质稳定性和调节相互作用的分子机制。到目前为止,已经给予了疏水性和极性包装相互作用和蛋白质核心的稳定性。相反,静电和尤其是表面相互作用的作用得到了不太关注。然而,由于早期折叠成熟的步骤,静电沿蛋白质的整个生命周期发挥枢转作用,并且它参与了蛋白质定位的调节和与其他细胞或人造分子的相互作用。短期和远程静电相互作用与其他力一起提供分子和大分子组装中的基本指导提示。我们在此报告用于计算蛋白质静电物质的方法和用于通过静电相似性对蛋白质进行分类蛋白质的个体或比较分析的方法。然后,我们提供了天然蛋白质演化和生物技术设计中的静电分析和指纹的例子,在各种生物分析,抗体和纳米谱工程,药物设计和递送,分子病毒学,纳米技术和再生医学中的野生技术设计中的静电分析和指纹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号