首页> 外文学位 >Computational protein design with multiple functional and structural constraints.
【24h】

Computational protein design with multiple functional and structural constraints.

机译:具有多个功能和结构约束的计算蛋白质设计。

获取原文
获取原文并翻译 | 示例

摘要

In this work, a series of computational tools to predict protein sequences compatible with a given three-dimensional protein structure and a set of structural or functional constraints are presented. First, a "multi-constraint" protocol to design protein sequences optimized for multiple criteria is presented. For a number of multi-specific signaling and structural proteins, interface sequences are computationally designed to bind multiple interaction partners and design predictions are compared to naturally occurring amino acid sequences. In many cases, the multi-constraint design algorithm successfully "added up" diverse sequence preferences seen among several characterized binding partners, resulting in the prediction of highly native-like interface sequences. Multi-constraint designed sequences were also found to have overall weaker predicted binding scores than sequences designed to bind only a single interaction partner, suggesting that multi-specificity may come at a cost of affinity. This section concludes by discussing two distinct mechanisms for maintaining multi-specific binding, and providing examples of how the design protocol presented here might be used to rationally design proteins with multiple functional roles.;A method to predict sets of amino acids tolerated at protein-protein interfaces is presented next. By incorporating a flexible backbone move, termed "backrub", computational predictions of amino acid tolerances at a model interface, human growth hormone with its receptor, are found to closely mimic sequences observed in an experimental phage display dataset. The importance of incorporating backbone flexibility when predicting amino acid tolerance to substitution is discussed and an automated method to computationally predicting sequence libraries to enable challenging protein engineering problems is given.;Finally, a protocol for predicting single amino acid substitutions tolerated for a protein of great biological relevance, HIV-1 protease is presented. In this work multiple constraints present on the HIV-1 protease fold and function are integrated and a reduced set of amino acid mutations (able to be reached by a single mutation at the nucleotide level) was considered. Despite the simplifications inherent in the model, ∼80% of amino acid substitutions that occurred in clinical HIV-1 protease sequences were predicted as tolerated. This work further demonstrates that use of a single, fixed backbone as a structural template for design results in overall poorer predictive performance than designing on an ensemble of either crystallographically determined or computationally generated backbone structures.
机译:在这项工作中,提供了一系列计算工具来预测与给定三维蛋白质结构和一组结构或功能约束条件兼容的蛋白质序列。首先,提出了一种“多约束”方案来设计针对多个标准优化的蛋白质序列。对于许多多特异性信号传导和结构蛋白,将界面序列进行计算设计以结合多个相互作用伴侣,并将设计预测与天然氨基酸序列进行比较。在许多情况下,多约束设计算法成功地“累加”了在几个特征性结合配偶体之间看到的各种序列偏好,从而预测了高度天然的类界面序列。还发现多约束设计的序列比预期仅结合单个相互作用伴侣的序列整体预测的结合得分更弱,这表明多特异性可能是以亲和力为代价的。本节以讨论维持多特异性结合的两种不同机制作为结尾,并提供了一些示例,说明了如何使用此处介绍的设计方案合理设计具有多种功能角色的蛋白质。一种预测蛋白质耐受的氨基酸集的方法接下来介绍蛋白质界面。通过并入称为“ backrub”的灵活骨架运动,发现了模型界面(人体生长激素及其受体)在氨基酸界面的氨基酸耐受性的计算预测,可以紧密模拟在实验噬菌体展示数据集中观察到的序列。讨论了预测氨基酸对取代的耐受性时纳入骨架灵活性的重要性,并给出了一种自动计算序列文库的自动化方法,以实现具有挑战性的蛋白质工程问题。最后,提出了一种预测蛋白质耐受性最高的单个氨基酸取代的方案生物学相关性,提出了HIV-1蛋白酶。在这项工作中,整合了对HIV-1蛋白酶折叠和功能的多重限制,并考虑了减少的一组氨基酸突变(能够通过核苷酸水平的单个突变实现)。尽管该模型具有固有的简化功能,但仍可以耐受临床HIV-1蛋白酶序列中约80%的氨基酸取代。这项工作进一步证明,使用单个固定的骨架作为结构模板进行设计,与在晶体学确定的或计算生成的骨架结构的整体上进行设计相比,导致整体的预测性能较差。

著录项

  • 作者

    Humphris, Elisabeth Lyn.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号