首页> 美国卫生研究院文献>Biophysical Journal >Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization
【2h】

Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization

机译:Hi-C数据的微流学介绍了动态3D基因组组织的频谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The one-dimensional information of genomic DNA is hierarchically packed inside the eukaryotic cell nucleus and organized in a three-dimensional (3D) space. Genome-wide chromosome conformation capture (Hi-C) methods have uncovered the 3D genome organization and revealed multiscale chromatin domains of compartments and topologically associating domains (TADs). Moreover, single-nucleosome live-cell imaging experiments have revealed the dynamic organization of chromatin domains caused by stochastic thermal fluctuations. However, the mechanism underlying the dynamic regulation of such hierarchical and structural chromatin units within the microscale thermal medium remains unclear. Microrheology is a way to measure dynamic viscoelastic properties coupling between thermal microenvironment and mechanical response. Here, we propose a new, to our knowledge, microrheology for Hi-C data to analyze the dynamic compliance property as a measure of rigidness and flexibility of genomic regions along with the time evolution. Our method allows the conversion of an Hi-C matrix into the spectrum of the dynamic rheological property along the genomic coordinate of a single chromosome. To demonstrate the power of the technique, we analyzed Hi-C data during the neural differentiation of mouse embryonic stem cells. We found that TAD boundaries behave as more rigid nodes than the intra-TAD regions. The spectrum clearly shows the dynamic viscoelasticity of chromatin domain formation at different timescales. Furthermore, we characterized the appearance of synchronous and liquid-like intercompartment interactions in differentiated cells. Together, our microrheology data derived from Hi-C data provide physical insights into the dynamics of the 3D genome organization.
机译:基因组DNA的一维信息在真核细胞核内部分层包装,并在三维(3D)空间中组织。基因组 - 宽染色体构象捕获(HI-C)方法已经未覆盖3D基因组组织,并揭示了隔室的多尺度染色质结构域和拓扑缔合域(TADS)。此外,单核小体活细胞成像实验揭示了由随机热波动引起的染色质域的动态组织。然而,在微尺度热培养基中这种分层和结构染色质单元的动态调节的机制仍然不清楚。微流学是一种测量热微环境与机械响应之间的动态粘弹性的一种方法。在这里,我们提出了一种新的,了解我们的知识,对Hi-C数据进行微流学学,以分析动态合规性,作为基因组区域的刚性和灵活性以及时间进化的衡量标准。我们的方法允许沿着单个染色体的基因组坐标转换Hi-C矩阵到动态流变性质的光谱。为了证明该技术的力量,我们在小鼠胚胎干细胞的神经分化期间分析了Hi-C数据。我们发现TAD边界表现得比TAD地区更加刚性节点。光谱清楚地显示了不同时间尺度的染色质域形成的动态粘弹性。此外,我们表征了分化细胞中同步和液体相互作用的外观。我们一起从Hi-C数据派生的微流学数据提供了进入3D基因组组织的动态的物理洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号