首页> 美国卫生研究院文献>BioData Mining >Identification of microbial interaction network: zero-inflated latent Ising model based approach
【2h】

Identification of microbial interaction network: zero-inflated latent Ising model based approach

机译:微生物交互网络的识别:基于零充气的潜在潜在模型的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The human microbiome, the collection of trillions of microbial organisms that live in our body spaces, belong to one of thousands of different species [1, 2]. The organisms that inhabit the human gut are an additional source of genetic diversity that can influence metabolism and modulate drug interactions [3]. Recent advances in genomic technologies enable production of thousands of 16S rRNA sequences per sample [4] and are powerful tools to explore the basic biology about human microbiome. Nevertheless, analyzing microbiome data and converting them into meaningful biological insights are still challenging tasks. First, the observed absolute abundance in sequencing experiment cannot inform the real absolute abundance of molecules in the sample which can be attributed to the sequence depth associated with the experiment. Multiple normalization methods have been proposed in literature to solve this problem among which total sum scaling (TSS) has been widely used in practice [5–9]. TSS scales each sample by the total read count and yields the relative abundance. However, the statistical analysis based on relative abundance can easily lead to spurious association due to the unit-sum constraint [10–14]. Further complicating the analysis of microbiome data is the zero-inflated distribution of read count [3]. As for the dataset in “Restults from the relative abundance of gut microbiota” section, among the 134 taxa, there are only 6 taxa for which the proportions of nonzero observations are greater than 80%. Zero inflation stems from the fact that the majority of the amplicon sequence variants (ASVs) either physically do not exist in the subject or are below the detection threshold for the given sample [2]. Another hurdle for analyzing the microbiome data is its high-dimensionality which usually involves hundreds of microbes; consequently, models equipped for this modeling task should be employed.
机译:人类微生物,生活在我们的身体空间微生物万亿的收集,数千种不同的属于一个[1,2]。栖息在人肠道中的生物体的遗传多样性的额外来源,可以影响代谢和调制药物相互作用[3]。在基因组技术的最新进步使生产的上千个样本[4] 16S rRNA序列和功能强大的工具,探讨有关人类微生物生物学基础。尽管如此,分析微生物的数据并将其转换为有意义的生物洞察力仍然具有挑战性的任务。首先,观察到的绝对丰度在测序实验无法告知样品中分子可以归因于与实验相关联的序列深度的实际绝对丰度。多个归一化方法在文献中已经提出了解决这个问题的其中总和缩放(TSS)已被广泛使用在实践中[5-9]。 TSS缩放由总读取计数每个样品,并产生相对丰度。然而,基于相对丰度的统计分析可以容易导致杂散协会由于单位总和约束[10-14]。微生物组数据的分析进一步复杂化读取计数[3]的零膨胀分布。至于“从肠道菌群的相对丰度Restults”部分中的数据集,所述分类单元134中,只有6个类群为哪些非零观测的比例大于80%。零通货膨胀从大多数扩增子的序列变体(ASVS)的事实茎以物理不受试者存在或低于对于给定的样品[2]的检测阈值。用于分析微生物数据的另一个障碍是其高维数,其通常涉及数百微生物;因此,车型搭载该建模任务应该被采用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号