首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Analgesic Compound from Sea Anemone Heteractis crispa Is the First Polypeptide Inhibitor of Vanilloid Receptor 1 (TRPV1)
【2h】

Analgesic Compound from Sea Anemone Heteractis crispa Is the First Polypeptide Inhibitor of Vanilloid Receptor 1 (TRPV1)

机译:海葵Heteractis crispa的镇痛药是 香草素受体1的第一个多肽抑制剂 (TRPV1)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Venomous animals from distinct phyla such as spiders, scorpions, snakes, cone snails, or sea anemones produce small toxic proteins interacting with a variety of cell targets. Their bites often cause pain. One of the ways of pain generation is the activation of TRPV1 channels. Screening of 30 different venoms from spiders and sea anemones for modulation of TRPV1 activity revealed inhibitors in tropical sea anemone Heteractis crispa venom. Several separation steps resulted in isolation of an inhibiting compound. This is a 56-residue-long polypeptide named APHC1 that has a Bos taurus trypsin inhibitor (BPTI)/Kunitz-type fold, mostly represented by serine protease inhibitors and ion channel blockers. APHC1 acted as a partial antagonist of capsaicin-induced currents (32 ± 9% inhibition) with half-maximal effective concentration (EC50) 54 ± 4 nm. In vivo, a 0.1 mg/kg dose of APHC1 significantly prolonged tail-flick latency and reduced capsaicin-induced acute pain. Therefore, our results can make an important contribution to the research into molecular mechanisms of TRPV1 modulation and help to solve the problem of overactivity of this receptor during a number of pathological processes in the organism.
机译:来自不同门的有毒动物,例如蜘蛛,蝎子,蛇,锥蜗牛或海葵,会产生可与多种细胞靶相互作用的小毒性蛋白质。他们的叮咬经常引起疼痛。产生疼痛的方法之一是激活TRPV1通道。从蜘蛛和海葵中筛选出30种不同的毒液以调节TRPV1的活性,揭示出热带海葵Heteractis crispa毒液中的抑制剂。几个分离步骤导致了抑制化合物的分离。这是一个56个残基长的多肽,称为APHC1,具有金牛座胰蛋白酶抑制剂(BPTI)/ Kunitz型折叠,主要代表丝氨酸蛋白酶抑制剂和离子通道阻滞剂。 APHC1充当辣椒素诱导电流的部分拮抗剂(抑制32±9%),最大有效浓度(EC50)的一半为54±4 nm。在体内,0.1 mg / kg剂量的APHC1可显着延长甩尾潜伏期并减少辣椒素引起的急性疼痛。因此,我们的结果可为研究TRPV1调节的分子机制做出重要贡献,并有助于解决生物体内许多病理过程中该受体过度活性的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号