首页> 美国卫生研究院文献>Micromachines >Size-Exclusion Particle Separation Driven by Micro-Flows in a Quasi-Spherical Droplet: Modelling and Experimental Results
【2h】

Size-Exclusion Particle Separation Driven by Micro-Flows in a Quasi-Spherical Droplet: Modelling and Experimental Results

机译:在准球形液滴中的微流量驱动的尺寸排除颗粒分离:建模和实验结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aqueous solution droplets are supported quasi contact-free by superhydrophobic surfaces. The convective flow in evaporating droplets allows the manipulation and control of biological molecules in solution. In previous works, super-hydrophobic drops on nano-patterned substrates have been used to analyze otherwise undetectable species in extremely low concentration ranges. Here, we used particle image velocimetry (PIV) for studying the flow field in water droplets containing polystyrene particles on a pillared silicon super-hydrophobic chip. The particles describe vortex-like motions around the droplet center as long as the evaporating droplet maintains a spherical shape. Simulations by a Finite Element Method (FEM) suggest that the recirculating flow is due to the temperature gradient along the droplet rim, generating a shear stress. Notably, the characteristics of the internal flow can be modulated by varying the intensity of the temperature gradient along the drop. We then used the flow-field determined by experiments and an approximate form of the Langevin equation to examine how particles are transported in the drop as a function of particle size. We found that larger particles with an average size of 36 μm are preferentially transported toward the center of the substrate, differently from smaller particles with a 10-fold lower size that are distributed more uniformly in the drop. Results suggest that solutions of spherical particles on a super-hydrophobic chip can be used to separate soft matter and biological molecules based on their size, similarly to the working principle of a time-of-flight (ToF) mass analyzer, except that the separation takes place in a micro-sphere, with less space, less time, and less solution required for the separation compared to conventional ToF systems.
机译:水溶液液滴通过超疏水表面不含准接触。蒸发液滴中的对流流动允许在溶液中操纵和控制生物分子。在以前的作用中,纳米图案底物上的超级疏水滴被用于分析极低浓度范围的不可检测的物种。这里,我们使用粒子图像速度(PIV)来研究在柱状硅超疏水芯片上含有聚苯乙烯颗粒的水滴中的流场。只要蒸发液滴保持球形,颗粒在液滴中心周围描述了类似的涡流运动。通过有限元方法(FEM)模拟表明再循环流动是由于沿液滴边缘的温度梯度,产生剪切应力。值得注意的是,可以通过沿着下降改变温度梯度的强度来调节内流的特性。然后,我们使用了通过实验确定的流场和Langevin方程的近似形式,以检查如何在粒度的函数下在下降中运输粒子。我们发现平均尺寸为36μm的较大颗粒优先于基板的中心传送,与具有10倍较低尺寸的较小颗粒,其在下降中更均匀地分布。结果表明,超疏水芯片上的球形颗粒的溶液可用于将柔软物质和生物分子分离,类似于飞行时间(TOF)质量分析仪的工作原理,除了分离与传统TOF系统相比,在微球中发生在微球中,空间较少,时间越少,时间较少,较少的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号