首页> 美国卫生研究院文献>Journal of Clinical Medicine >Depressed Cardiac Mechanical Energetic Efficiency: A Contributor to Cardiovascular Risk in Common Metabolic Diseases—From Mechanisms to Clinical Applications
【2h】

Depressed Cardiac Mechanical Energetic Efficiency: A Contributor to Cardiovascular Risk in Common Metabolic Diseases—From Mechanisms to Clinical Applications

机译:心脏机械能量效率:常见代谢疾病中心血管风险的贡献者 - 从临床应用的机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cardiac mechanical energetic efficiency is the ratio of external work (EW) to the total energy consumption. EW performed by the left ventricle (LV) during a single beat is represented by LV stroke work and may be calculated from the pressure–volume loop area (PVLA), while energy consumption corresponds to myocardial oxygen consumption (MVO2) expressed on a per-beat basis. Classical early human studies estimated total mechanical LV efficiency at 20–30%, whereas the remaining energy is dissipated as heat. Total mechanical efficiency is a joint effect of the efficiency of energy transfer at three sequential stages. The first step, from MVO2 to adenosine triphosphate (ATP), reflects the yield of oxidative phosphorylation (i.e., phosphate-to-oxygen ratio). The second step, from ATP split to pressure–volume area, represents the proportion of the energy liberated during ATP hydrolysis which is converted to total mechanical energy. Total mechanical energy generated per beat—represented by pressure–volume area—consists of EW (corresponding to PVLA) and potential energy, which is needed to develop tension during isovolumic contraction. The efficiency of the third step of energy transfer, i.e., from pressure–volume area to EW, decreases with depressed LV contractility, increased afterload, more concentric LV geometry with diastolic dysfunction and lower LV preload reserve. As practical assessment of LV efficiency poses methodological problems, De Simone et al. proposed a simple surrogate measure of myocardial efficiency, i.e., mechano-energetic efficiency index (MEEi) calculated from LV stroke volume, heart rate and LV mass. In two independent cohorts, including a large group of hypertensive subjects and a population-based cohort (both free of prevalent cardiovascular disease and with preserved ejection fraction), low MEEi independently predicted composite adverse cardiovascular events and incident heart failure. It was hypothesized that the prognostic ability of low MEEi can result from its association with both metabolic and hemodynamic alterations, i.e., metabolic syndrome components, the degree of insulin resistance, concentric LV geometry, LV diastolic and discrete systolic dysfunction. On the one part, an increased reliance of cardiomyocytes on the oxidation of free fatty acids, typical for insulin-resistant states, is associated with both a lower yield of ATP per oxygen molecule and lesser availability of ATP for contraction, which might decrease energetic efficiency of the first and second step of energy transfer from MVO2 to EW. On the other part, concentric LV remodeling and LV dysfunction despite preserved ejection fraction can impair the efficiency of the third energy transfer step. In conclusion, the association of low MEEi with adverse cardiovascular outcome might be related to a multi-step impairment of energy transfer from MVO2 to EW in various clinical settings, including metabolic syndrome, diabetes, hypertension and heart failure. Irrespective of theoretical considerations, MEEi appears an attractive simple tool which couldt improve risk stratification in hypertensive and diabetic patients for primary prevention purposes. Further clinical studies are warranted to estimate the predictive ability of MEEi and its post-treatment changes, especially in patients on novel antidiabetic drugs and subjects with common metabolic diseases and concomitant chronic coronary syndromes, in whom the potential relevance of MEE can be potentiated by myocardial ischemia.
机译:心脏机械能量效率是外部工作(EW)与总能耗的比率。由左心室(LV)在单个节拍期间执行的EW由LV行程工作表示,并且可以从压力体积环区域(PVLA)计算,而能量消耗对应于在每次上表达的心肌氧消耗(MVO2)。击败基础。经典早期人类研究估计总机械LV效率为20-30%,而剩余的能量被散发为热量。总机械效率是三个连续阶段能量转移效率的关节效果。从MVO 2到腺苷三磷酸(ATP)的第一步反映了氧化磷酸化(即,磷酸氢比)的产率。从ATP分开到压力体积区域的第二步表示在ATP水解过程中释放的能量的比例,其转化为总机械能。由压力体积区域产生的每次拍摄的总机械能 - 由EW(对应于PVLA)和势能组成,这是在储存期间产生张力所需的势能。能量转移的第三步骤的效率,即从压力体积区域到eW,随着LV收缩性的抑郁率,较高的舒张功能障碍和较低的LV预加载储备而减少了抑郁的LV收缩性,更加同心的LV几何形状。作为LV效率的实际评估造成方法论问题,De Simone等。提出了一种简单的代理效率,即由LV行程体积,心率和LV质量计算的机械能效率指数(MEEI)。在两个独立的队列中,包括一大群高血压科目和基于人口的群组(无流行的心血管疾病和保存的射血分数),低Meei独立预测复合不良心血管事件和事件心力衰竭。假设低meei的预后能力可以由其与代谢和血液动力学改变的关联产生,即代谢综合征组分,胰岛素抵抗程度,同心LV几何,LV舒张和离散收缩功能障碍。在一方面,心肌细胞对胰岛素抗性状态典型的诸如胰岛素状态的典型氧化的增加依赖性,与每种氧分子的较低产量和ATP的较低可收缩的可用性有关,这可能降低了能量效率从MVO2到EW的能量转移的第一步和第二步。在另一部分,尽管保存的喷射部分尽管存在同心的LV重塑和LV功能障碍会损害第三能量转移步骤的效率。总之,低MEEI与不良心血管结果的关联可能与各种临床环境中的MVO2到EW的能量转移的多步损伤有关,包括代谢综合征,糖尿病,高血压和心力衰竭。无论理论考虑因素如何,MEEI都出现了一个有吸引力的简单工具,可以提高高血压和糖尿病患者的风险分层以获得初级预防目的。需要进一步的临床研究来估计Meei的预测能力及其后治疗后的改变,特别是在新的抗糖尿病药物和伴有常见代谢疾病的受试者和伴随慢性冠状动脉综合征的患者中,可以通过心肌增强Mee的潜在相关性。缺血。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号