首页> 美国卫生研究院文献>Advanced Science >Evolution of Conformation Nanomechanics and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals
【2h】

Evolution of Conformation Nanomechanics and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals

机译:单淀粉样蛋白原纤维转化为微晶的单构型纳米力学和红外纳米光谱的演变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanomechanical properties of amyloid fibrils and nanocrystals depend on their secondary and quaternary structure, and the geometry of intermolecular hydrogen bonds. Advanced imaging methods based on atomic force microscopy (AFM) have unravelled the morphological and mechanical heterogeneity of amyloids, however a full understanding has been hampered by the limited resolution of conventional spectroscopic methods. Here, it is shown that single molecule nanomechanical mapping and infrared nanospectroscopy (AFM‐IR) in combination with atomistic modelling enable unravelling at the single aggregate scale of the morphological, nanomechanical, chemical, and structural transition from amyloid fibrils to amyloid microcrystals in the hexapeptides, ILQINS, IFQINS, and TFQINS. Different morphologies have different Young's moduli, within 2–6 GPa, with amyloid fibrils exhibiting lower Young's moduli compared to amyloid microcrystals. The origins of this stiffening are unravelled and related to the increased content of intermolecular β‐sheet and the increased lengthscale of cooperativity following the transition from twisted fibril to flat nanocrystal. Increased stiffness in Young's moduli is correlated with increased density of intermolecular hydrogen bonding and parallel β‐sheet structure, which energetically stabilize crystals over the other polymorphs. These results offer additional evidence for the position of amyloid crystals in the minimum of the protein folding and aggregation landscape.
机译:淀粉样蛋白原纤维和纳米晶体的纳米力学性质取决于它们的仲和四元结构,以及分子间氢键的几何形状。基于原子力显微镜(AFM)的高级成像方法已经解开了淀粉样蛋白的形态和机械异质性,但是通过常规光谱方法的有限分辨率阻碍了全面的理解。这里,示出了单分子纳米机械映射和红外纳米谱(AFM-IR)与原子模型组合的组合能够以不同的形态学,纳米力学,化学物质和结构转变的单一集合规模从淀粉样蛋白原纤维到己二肽中的淀粉样蛋白微晶中的单一集合规模展开,ilqins,ifqins和tfqins。与淀粉样淀粉蛋白微晶相比,不同的形态在2-6GPa内具有不同的杨氏调节,其在2-6GPa内,淀粉样蛋白原纤维表现出较小的杨氏调味率。这种加强的起源被解开并且与分子间β-片的含量增加以及在从扭曲的原纤维到扁平纳米晶体中的转变后的合作率的增加。杨氏模突中的增加与分子间氢键和平行β-片状结构的密度增加相关,其在其它多晶型物上能量稳定晶体。这些结果为蛋白质折叠和聚集景观的最小值提供了淀粉样晶体的位置的额外证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号