首页> 美国卫生研究院文献>Advanced Science >A Dual‐Excitation Decoding Strategy Based on NIR Hybrid Nanocomposites for High‐Accuracy Thermal Sensing
【2h】

A Dual‐Excitation Decoding Strategy Based on NIR Hybrid Nanocomposites for High‐Accuracy Thermal Sensing

机译:基于NIR杂交纳米复合材料的高精度热敏的双激励解码策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optical thermal sensing holds great promise for disease theranostics. However, traditional ratiometric thermometry methods, in which intensity ratio of two nonoverlapping emissions is defined as the thermosensitive parameter, may have a limited accuracy in temperature read‐out due to the deleterious interference from wavelength‐ and temperature‐dependent photon attenuation in tissue. To overcome this limitation, a dual‐excitation decoding strategy based on NIR hybrid nanocomposites comprising self‐assembled quantum dots (QDs) and Nd3+ doped fluoride nanocrystals (NCs) is proposed for thermal sensing. Upon excitation at 808 nm, the intensity ratio of two emissions at identical wavelength (1057 nm) from QDs and NCs, respectively, is defined as the thermometric parameter R. By employing another 830 nm laser beam following the same optical path as 808 nm laser to exclusively excite QDs, the two overlapping emissions can be easily decoded. The acquired R proves to be inert to the detection depth in tissue, with a minimized temperature reading error of ≈2.3 °C at 35 °C (at a depth of ≈1.1 mm), while the traditional thermometry mode based on the nonoverlapping 1025 and 863 nm emissions may exhibit a large error of ≈43.0 °C. The insights provided by this work pave the way toward high‐accuracy deep‐tissue biosensing.
机译:光学热敏对疾病治疗有很大的承诺。然而,传统的比例测温方法,其中两个非抛光排放的强度比被定义为热敏参数,由于来自组织中的波长和温度依赖性光子衰减的有害干扰,温度读出的温度读出有限的精度。为了克服这种限制,提出了基于包括自组装量子点(QDS)和Nd3 +掺杂氟化物纳米晶体(NCS)的基于NIR杂化纳米复合材料的双激发解码策略用于热敏。在808nm的激发时,分别从QD和NCS的相同波长(1057nm)处的两个发射的强度比定义为温度参数R.通过以与808nm激光相同的光路之后的另一830nm激光束为了完全激发QD,可以容易地解码两个重叠的排放。所获得的R证明是在组织中的检测深度惰性,最小化温度读数误差为35°C(深度为≈1.1mm),而传统的温度模式基于非原始的1025和863 NM排放可能表现出大的误差≈43.0°C。这项工作提供的见解铺平了高精度深层组织生物腐蚀途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号