首页> 美国卫生研究院文献>Translational Animal Science >How did Lofgreen and Garrett do the math?
【2h】

How did Lofgreen and Garrett do the math?

机译:Lofgreen和Garrett是怎么做数学的?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lofgreen and Garrett introduced a new system for predicting growing and finishing beef cattle energy requirements and feed values using net energy concepts. Based on data from comparative slaughter experiments they mathematically derived the California Net Energy System. Scaling values to body weight to the ¾ power, they summarized metabolizable energy intake (ME), energy retained (energy balance [EB]), and heat production (HP) data. They regressed the logarithm of HP on ME and extended the line to zero intake, and estimated fasting HP at 0.077 Mcal/kg , similar to previous estimates. They found no significant difference in fasting HP between steers and heifers. Above maintenance, however, a logarithmic fit of EB on ME does not allow for increased EB once ME is greater than 340 kcal/kg , or about three times maintenance intake. So based on their previous work, they used a linear fit so that partial efficiency of gain above maintenance was constant for a given feed. They show that with increasing roughage level efficiency of gain (slope) decreases, consistent with increasing efficiency of gain and maintenance with greater metabolizable energy of the feed. Making the system useful required that gain in body weight be related to EB. They settled on a parabolic equation, with significant differences between steers and heifers. Lofgreen and Garrett also used data from a number of experiments to relate ME and EB to estimate the ME required for maintenance (ME = HP) and then related the amount of feed that provided that amount of ME to the metabolizable energy content of the feed (MEc), resulting in a logarithmic equation. Then they related that amount of feed to the net energy for gain calculated as the slope of the EB line when regressed against feed intake. Combining the two equations, they estimate the net energy for maintenance and gain per unit feed (Mcal/kg dry matter) as a function of MEc: 0.4258 × 1.663 and 2.544–5.670 × 0.6012 , respectively. Finally, they show how to calculate net energy for maintenance and gain from experiments where two levels of a ration are fed and EB measured, where one level is fed and a metabolism trial is conducted, or when just a metabolism trial is conducted—but results are not consistent between designs.
机译:Lofgreen和Garrett引入了一种新系统,可以使用净能量概念预测生长和肥育肉牛的能量需求和饲料价值。根据比较屠宰实验的数据,他们从数学上推导了加利福尼亚净能源系统。他们将值换算成体重的3/4功率,总结了可代谢的能量摄入(ME),保留的能量(能量平衡[EB])和热量产生(HP)数据。他们回归了HP在ME上的对数,并将该线扩展至零摄入,并估计空腹HP为0.077 Mcal / kg,与先前的估计相似。他们发现,小母牛和小母牛在禁食HP方面没有显着差异。但是,在维护之上,如果ME大于340 kcal / kg,或者是维护摄入量的三倍,那么EB与ME的对数拟合将不允许EB增加。因此,根据他们以前的工作,他们使用了线性拟合,因此对于给定的进料,高于维持率的部分增益效率是恒定的。他们表明,随着粗饲料水平的提高,增产效率(斜率)降低,这与增产效率和饲料饲料代谢能更高的维持率一致。要使系统有用,就必须使体重增加与EB有关。他们以抛物线方程为基础,ste牛和小母牛之间存在显着差异。 Lofgreen和Garrett还使用了来自多个实验的数据来关联ME和EB来估算维持所需的ME(ME = HP),然后将提供该ME的饲料量与饲料的代谢能含量相关联( MEc),得到对数方程。然后,他们将饲料的量与净能量相关,以相对于饲料摄入量的EB线的斜率计算出的增益。结合这两个方程,他们估计了维持的净能量和单位饲料增重(Mcal / kg干物质)作为MEc的函数:分别为0.4258×1.663和2.544–5.670×0.6012。最后,他们展示了如何从实验中计算出维持和获得净能量的方法,该实验需要进食两种水平的口粮并测量EB,进食一种水平的口粮并进行新陈代谢试验,或者仅进行新陈代谢试验,但是结果设计之间不一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号