首页> 美国卫生研究院文献>Materials >Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties
【2h】

Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties

机译:细菌纤维素纳米复合材料:形态和力学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacterial cellulose (BC) is a promising material for biomedical applications due to its unique properties such as high mechanical strength and biocompatibility. This article describes the microbiological synthesis, modification, and characterization of the obtained BC-nanocomposites originating from symbiotic consortium . Two BC-modifications have been obtained: BC-Ag and BC-calcium phosphate (BC-Ca (PO ) ). Structure and physicochemical properties of the BC and its modifications were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and infrared Fourier spectroscopy as well as by measurements of mechanical and water holding/absorbing capacities. Topographic analysis of the surface revealed multicomponent thick fibrils (150–160 nm in diameter and about 15 µm in length) constituted by 50–60 nm nanofibrils weaved into a left-hand helix. Distinctive features of Ca-phosphate-modified BC samples were (a) the presence of 500–700 nm entanglements and (b) inclusions of Ca (PO ) crystals. The samples impregnated with Ag nanoparticles exhibited numerous roundish inclusions, about 110 nm in diameter. The boundaries between the organic and inorganic phases were very distinct in both cases. The Ag-modified samples also showed a prominent waving pattern in the packing of nanofibrils. The obtained BC gel films possessed water-holding capacity of about 62.35 g/g. However, the dried (to a constant mass) BC-films later exhibited a low water absorption capacity (3.82 g/g). It was found that decellularized BC samples had 2.4 times larger Young’s modulus and 2.2 times greater tensile strength as compared to dehydrated native BC films. We presume that this was caused by molecular compaction of the BC structure.
机译:细菌纤维素(BC)由于其独特的特性(例如高机械强度和生物相容性)而成为有前途的生物医学材料。本文介绍了源自共生财团的BC-纳米复合材料的微生物合成,修饰和表征。已获得两种BC改性:BC-Ag和BC-磷酸钙(BC-Ca(PO))。通过扫描电子显微镜(SEM),能量色散X射线光谱(EDX),原子力显微镜(AFM)和红外傅里叶光谱以及机械和机械测量来研究BC的结构和理化性质及其修饰形式。保水/吸水能力。表面的形貌分析显示,多组分粗纤维(直径150-160 nm,长度约15 µm)由编织成左侧螺旋线的50-60 nm纳米纤维组成。 Ca-磷酸盐改性的BC样品的显着特征是(a)500-700 nm纠缠的存在和(b)Ca(PO)晶体的夹杂物。用Ag纳米颗粒浸渍的样品表现出许多圆形的夹杂物,直径约110nm。在两种情况下,有机相和无机相之间的边界非常不同。 Ag修饰的样品在纳米原纤维的包装中也显示出突出的波动模式。所得的BC凝胶膜具有约62.35g / g的持水量。然而,干燥的(恒定质量的)BC膜随后显示出低的吸水能力(3.82g / g)。已经发现,与脱水的天然BC膜相比,脱细胞的BC样品的杨氏模量大2.4倍,拉伸强度大2.2倍。我们推测这是由于BC结构的分子致密化引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号