首页> 外文学位 >Cellulosic nanocomposites with unique morphology and properties.
【24h】

Cellulosic nanocomposites with unique morphology and properties.

机译:具有独特形态和特性的纤维素纳米复合材料。

获取原文
获取原文并翻译 | 示例

摘要

A new and environmental benign method for preparing regenerated cellulose and montmorillonite (MMT) biodegradable nanocomposites is developed using 4-methyl morpholine N-oxide (NMMO) as the solvent. Results showed that the modulus of the nanocomposites increases linearly at the MMT loading range of 1--10%. Using Wide Angle X-ray Diffraction (WXRD) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation, it was found for the first time that the MMT was intercalated and exfoliated in the pure cellulose matrix.;Cellulose nanowhiskers reinforced poly(vinyl alcohol) (PVA) nanofiber web was successfully fabricated using electrospinning technique. The morphology and mechanical properties of highly aligned electrospun fiber webs were investigated. The relative alignment degree of electrospun fiber webs was analyzed using a fast Fourier transform (FFT) method. It was found that the modulus and tensile strength of aligned webs are higher than those of isotropic electrospun fiber webs. The relations of reinforcement effects, fiber alignment and cellulose nanowhiskers alignment have been investigated.;The mechanical properties of cellulose nanowhiskers reinforced poly(vinyl alcohol) (PVA) electrospun fiber rather than fiber webs have been measured using nanoindentation method. The modulus of PVA/cellulose nanowhiskers electrospun fiber increases linearly with increasing loading ratio of cellulose nanowhiskers up to 20.0wt%. Experimental results were compared with a longitudinal Halpin-Tsai model. The nanoindentation results are 20∼30% smaller than the longitudinal model predictions.;Ice-templated (IT) cellulose microfibril porous foams are successfully fabricated via unidirectional freezing methods. IT cellulose microfibrils foam prepared from 1.0wt% suspension shows a cross-linked network structure. As increasing the concentrations of cellulose microfibrils suspension from 1.0wt% up to 2.75wt%, a transition from a network structure to a lamellar channel structure happens gradually. As increasing the concentration of suspensions from 3.0wt% up to 8.0wt%, highly aligned channel structures parallel to the freezing direction were obtained. It was found that cellulose microfibrils are partially aligned along the freezing direction. It was found that the compressive stresses of IT cellulose microfibril foams increase linearly as increasing concentrations of suspension.;The morphology and growth mechanism of IT surfaces were investigated successfully using cellulose microfibrils and hydrophilic substrates. When the height of IT cellulose microfibril surface is 50 mum, the surface shows honey-comb like structures. When the height of IT surfaces is between 100 mum and 200 mum, a transition from honey-comb like structures to multilayer structures happens. In these cases, ellipse-shape channels are observed. If the height of IT surfaces is larger than 300 mum, fully developed multichannel surfaces are obtained. By controlling the temperature gradient between cellulose microfibril suspensions and secondary freezing mediums, various surface structures including honey-comb like structures, ellipse-shape channel structures, fully developed multichannel structures are obtained successfully. For the honey-comb like patterned surface, high contact angles are observed. On the other hand, for the layered patterned surface, anisotropic wetting properties were observed.
机译:以4-甲基吗啉N-氧化物(NMMO)为溶剂,开发了一种新型的环境友好的制备再生纤维素和蒙脱土(MMT)可生物降解纳米复合材料的方法。结果表明,纳米复合材料的模量在1--10%的MMT加载范围内线性增加。使用广角X射线衍射(WXRD)分析,扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察,首次发现MMT嵌入和剥离了纯纤维素基质。使用静电纺丝技术成功地制造了增强的聚乙烯醇(PVA)纳米纤维网。研究了高度排列的电纺纤维网的形态和力学性能。使用快速傅里叶变换(FFT)方法分析了电纺纤维网的相对排列程度。已经发现,取向纤网的模量和拉伸强度高于各向同性电纺纤维纤网的模量和拉伸强度。研究了增强效果,纤维排列和纤维素纳米晶须排列的关系。采用纳米压痕法测量了纤维素纳米晶须增强的聚乙烯醇(PVA)电纺纤维而不是纤维网的力学性能。 PVA /纤维素纳米晶须电纺纤维的模量随着纤维素纳米晶须的负载比增加至20.0wt%而线性增加。将实验结果与纵向Halpin-Tsai模型进行了比较。纳米压痕结果比纵向模型预测的结果小20%到30%。;通过单向冷冻方法成功制备了冰模板(IT)纤维素微纤维多孔泡沫。由1.0wt%的悬浮液制备的IT纤维素微纤维泡沫显示出交联的网络结构。随着纤维素微纤维悬浮液浓度从1.0wt%增加到2.75wt%,逐渐从网络结构过渡到层状通道结构。随着悬浮液浓度从3.0wt%增加到8.0wt%,获得了平行于冻结方向的高度对齐的通道结构。发现纤维素微纤维沿冷冻方向部分排列。研究发现,随着悬浮液浓度的增加,IT纤维素微纤维泡沫的压缩应力呈线性增加。;成功研究了纤维素微纤维和亲水性基质对IT表面的形貌和生长机理。当IT纤维素微纤维表面的高度为50μm时,该表面显示出蜂窝状结构。当IT表面的高度在100微米至200微米之间时,会发生从蜂窝状结构到多层结构的过渡。在这些情况下,观察到椭圆形通道。如果IT表面的高度大于300毫米,则将获得充分开发的多通道表面。通过控制纤维素微原纤维悬浮液和次级冷冻介质之间的温度梯度,成功获得了包括蜂窝状结构,椭圆形通道结构,充分发展的多通道结构在内的各种表面结构。对于蜂窝状图案化表面,观察到高接触角。另一方面,对于分层的图案化表面,观察到各向异性润湿性能。

著录项

  • 作者

    Lee, Jihoon.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号