首页> 美国卫生研究院文献>Microorganisms >Bacterial Synthesis of Ternary CdSAg Quantum Dots through Cation Exchange: Tuning the Composition and Properties of Biological Nanoparticles for Bioimaging and Photovoltaic Applications
【2h】

Bacterial Synthesis of Ternary CdSAg Quantum Dots through Cation Exchange: Tuning the Composition and Properties of Biological Nanoparticles for Bioimaging and Photovoltaic Applications

机译:通过阳离子交换细菌合成三元CdSAg量子点:调整生物纳米粒子的组成和性质的生物成像和光伏应用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we introduce a biological method for the production of ternary Quantum Dots (QDs): complex nanostructures with tunable optical and structural properties that utilizes post-synthesis modifications through cation exchange. This versatile in-situ cation exchange method being reported for the first time shows great potential for extending the scope of microbial synthesis. By using this bacterial-based method, we easily synthesize and purify CdS, CdSAg, and Ag S nanocrystals of a size below 15 nm and with variable morphologies that exhibit fluorescence emissions covering a broad spectral range (from 400 to 800 nm). Energy-dispersive X-ray spectroscopy (EDS) results indicate the partial replacement of Cd by Ag when AgNO concentration is increased. This replacement produces CdSAg ternary QDs hetero-structures with high stability, fluorescence in the NIR-I (700 - 800 nm), and 36.13% quantum yield. Furthermore, this reaction can be extended for the production of soluble Ag S nanoparticles (NPs) without any traces of Cd. QDs biosynthesized through this cation exchange process display very low toxicity when tested in bacterial or human cell lines. Biosynthesized ternary hetero-structures were used as red fluorescent dyes to label HeLa cells in confocal microscopy studies, which validates its use in bioimaging applications in the near infrared region. In addition, the application of biologically-produced cadmium NPs in solar cells is reported for the first time. The three biosynthesized QDs were successfully used as photosensitizers, where the CdSAg QDs show the best photovoltaic parameters. Altogether, obtained results validate the use of bacterial cells for the controlled production of nanomaterials with properties that allow their application in diverse technologies. We developed a simple biological process for obtaining tunable Quantum Dots (QDs) with different metal compositions through a cation exchange process. Nanoparticles (NPs) are produced in the extracellular space of bacterial cells exposed to cysteine and CdCl in a reaction that depends on S generation mediated by cysteine desulfhydrase enzymes and uses cellular biomolecules to stabilize the nanoparticle. Using this extracellular approach, water-soluble fluorescent CdS, CdSAg, and Ag S Quantum Dots with a tunable emission ranging from 400 to 800 nm were generated. This is the first study reporting the use of microorganisms to produce tunable ternary QDs and the first time that a cation exchange process mediated by cells is described. Obtained results validate the use of biological synthesis to produce NPs with new characteristics and opens a completely new research field related to the use of microorganisms to synthesize complex NPs that are difficult to obtain with regular chemical methods.
机译:在这项研究中,我们介绍了一种生产三元量子点(QDs)的生物方法:具有可调光学和结构特性的复杂纳米结构,该结构利用阳离子交换后的合成修饰。首次报道的这种通用的原位阳离子交换方法显示了扩展微生物合成范围的巨大潜力。通过使用这种基于细菌的方法,我们可以轻松地合成和纯化尺寸小于15 nm的CdS,CdSAg和Ag S纳米晶体,并且具有可变的形态,其荧光发射范围很广(从400到800 nm)。能量色散X射线光谱(EDS)结果表明,当AgNO浓度增加时,Ag会部分取代Cd。该替代产生具有高稳定性的CdSAg三元QDs异质结构,NIR-1(700-800nm)中的荧光和36.13%的量子产率。此外,该反应可扩展为生产可溶性Ag S纳米颗粒(NPs),而没有任何痕量的Cd。通过这种阳离子交换过程生物合成的量子点在细菌或人类细胞系中测试时显示出极低的毒性。在共聚焦显微镜研究中,生物合成的三元异质结构被用作红色荧光染料标记HeLa细胞,这证实了其在近红外区域的生物成像应用中的用途。另外,首次报道了生物产生的镉纳米颗粒在太阳能电池中的应用。这三个生物合成的量子点已成功用作光敏剂,其中CdSAg量子点显示出最佳的光伏参数。总而言之,获得的结果验证了细菌细胞用于控制纳米材料生产的特性,其特性使其可以应用于多种技术。我们开发了一种简单的生物过程,可通过阳离子交换过程获得具有不同金属成分的可调量子点(QD)。纳米颗粒(NPs)在暴露于半胱氨酸和CdCl的细菌细胞的胞外空间中产生,该反应取决于半胱氨酸脱硫酶介导的S生成,并使用细胞生物分子来稳定纳米颗粒。使用这种细胞外方法,可产生可调发射范围为400至800 nm的水溶性荧光CdS,CdSAg和Ag S量子点。这是第一项报道使用微生物产生可调节三元QD的研究,并且首次描述了细胞介导的阳离子交换过程。所获得的结果验证了生物合成方法生产具有新特性的NP的可能性,并打开了一个与微生物利用常规化学方法难以获得的复杂NP合成相关的全新研究领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号