首页> 美国卫生研究院文献>Polymers >Fabrication of High-Quality Polymer Composite Frame by a New Method of Fiber Winding Process
【2h】

Fabrication of High-Quality Polymer Composite Frame by a New Method of Fiber Winding Process

机译:纤维缠绕新方法制备高品质聚合物复合框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Polymer composite frame has been frequently used in the main structural body of vehicles in aerospace, automotive, etc., applications. Manufacturing of complex curved composite frame suffer from the lack of accurate and optimum method of winding process that lead to preparation of uniform fiber arrangement in critical location of the curved frame. This article deals with the fabrication of high-quality polymer composite frame through an optimal winding of textile fibers onto a non-bearing core frame using a fiber-processing head and an industrial robot. The number of winding layers of fibers and their winding angles are determined based on the operational load on the composite structure. Ensuring the correct winding angles and thus also the homogeneity of fibers in each winding layer can be achieved by using an industrial robot and by definition of its suitable off-line trajectory for the production cycle. Determination of an optimal off-line trajectory of the end-effector of a robot (robot-end-effector (REE)) is important especially in the case of complicated 3D shaped frames. The authors developed their own calculation procedure to determine the optimal REE trajectory in the composite manufacturing process. A mathematical model of the winding process, matrix calculus (particularly matrices of rotations and translations) and an optimization differential evolution algorithm are used during calculation of the optimal REE trajectory. Polymer composites with greater resistance to failure damage (especially against physical destruction) can be produced using the above mentioned procedure. The procedure was successfully tested in an experimental composite laboratory. Two practical examples of optimal trajectory calculation are included in the article. The described optimization algorithm of REE trajectory is completely independent of the industrial robot type and robot software tools used and can also be used in other composite manufacturing technologies.
机译:聚合物复合框架已被频繁地用于航空航天,汽车等应用中的车辆的主体结构中。复杂的弯曲复合框架的制造缺乏精确和最佳的卷绕方法,从而无法在弯曲框架的关键位置制备均匀的纤维排列。本文通过使用纤维加工头和工业机器人通过将纺织纤维最佳缠绕到非轴承芯框架上,来制造高质量的聚合物复合框架。纤维缠绕层的数量及其缠绕角度是根据复合结构上的操作负荷确定的。通过使用工业机器人并根据其在生产周期中合适的离线轨迹的定义,可以确保正确的缠绕角度,从而确保每个缠绕层中纤维的均匀性。确定机器人末端执行器的最佳离线轨迹(机器人末端执行器(REE))非常重要,尤其是在复杂的3D形状框架中。作者开发了自己的计算程序来确定复合材料制造过程中的最佳REE轨迹。在计算最佳REE轨迹时,使用了绕线过程的数学模型,矩阵演算(尤其是旋转和平移矩阵)和优化的差分演化算法。可以使用上述步骤来生产具有更大的抗破坏破坏性(尤其是抗物理破坏性)的聚合物复合材料。该程序已在实验性复合实验室中成功测试。文章中包括两个最佳轨迹计算的实际示例。所描述的REE轨迹优化算法完全独立于所使用的工业机器人类型和机器人软件工具,也可以用于其他复合制造技术中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号