首页> 美国卫生研究院文献>Polymers >π–π Stacking Distance and Phase Separation Controlled Efficiency in Stable All-Polymer Solar Cells
【2h】

π–π Stacking Distance and Phase Separation Controlled Efficiency in Stable All-Polymer Solar Cells

机译:稳定全聚合物太阳能电池的π–π堆积距离和相分离控制效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The morphology of the active layer plays a crucial role in determining device performance and stability for organic solar cells. All-polymer solar cells (All-PSCs), showing robust and stable morphologies, have been proven to give better thermal stability than their fullerene counterparts. However, outstanding thermal stability is not always the case for polymer blends, and the limiting factors responsible for the poor thermal stability in some All-PSCs, and how to obtain higher efficiency without losing stability, still remain unclear. By studying the morphology of poly [2,3-bis (3-octyloxyphenyl) quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl](TQ1)/poly[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl]] (PCE10)/PNDI-T10 blend systems, we found that the rearranged molecular packing structure and phase separation were mainly responsible for the poor thermal stability in devices containing PCE10. The TQ1/PNDI-T10 devices exhibited an improved PCE with a decreased π–π stacking distance after thermal annealing; PCE10/PNDI-T10 devices showed a better pristine PCE, however, thermal annealing induced the increased π–π stacking distance and thus inferior hole conductivity, leading to a decreased PCE. Thus, a maximum PCE could be achieved in a TQ1/PCE10/PNDI-T10 (1/1/1) ternary system after thermal annealing resulting from their favorable molecular interaction and the trade-off of molecular packing structure variations between TQ1 and PCE10. This indicates that a route to efficient and thermal stable All-PSCs can be achieved in a ternary blend by using material with excellent pristine efficiency, combined with another material showing improved efficiency under thermal annealing.
机译:活性层的形态在确定有机太阳能电池的器件性能和稳定性方面起着至关重要的作用。已证明全聚合物太阳能电池(All-PSC)表现出强大而稳定的形态,比其富勒烯同类产品具有更好的热稳定性。然而,聚合物共混物并不总是具有出色的热稳定性,而导致某些All-PSC的热稳定性差的限制因素,以及如何在不损失稳定性的情况下获得更高的效率,仍然不清楚。通过研究聚[2,3-双(3-辛基氧基苯基)喹喔啉-5,8-二基-alt-噻吩-2,5-二基](TQ1)/聚[4,8-双[5-( 2-乙基己基)-2-噻吩基]苯并[1,2-b:4,5-b']二噻吩-alt-(4-(2-乙基己基)-3-氟噻吩并[3,4-b]噻吩-) -2-羧酸酯-2-6-二基]](PCE10)/ PNDI-T10共混体系,我们发现重排的分子堆积结构和相分离是造成含PCE10的器件热稳定性差的主要原因。 TQ1 / PNDI-T10器件在热退火后的PCE有所改善,而π-π的堆积距离却减小了。 PCE10 / PNDI-T10器件显示出更好的原始PCE,但是,热退火导致π-π堆叠距离增加,从而降低了空穴电导率,从而导致PCE降低。因此,在热退火后,TQ1 / PCE10 / PNDI-T10(1/1/1)三元系统可以实现最大PCE,这是由于它们的良好分子相互作用以及TQ1和PCE10之间的分子堆积结构变化之间的权衡所致。这表明,通过使用具有极佳原始效率的材料,再结合另一种在热退火下显示出更高效率的材料,可以在三元共混物中实现高效且热稳定的All-PSC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号