首页> 美国卫生研究院文献>Polymers >The Formation Mechanism of the Double Gas Layer in Gas-Assisted Extrusion and Its Influence on Plastic Micro-Tube Formation
【2h】

The Formation Mechanism of the Double Gas Layer in Gas-Assisted Extrusion and Its Influence on Plastic Micro-Tube Formation

机译:气体辅助挤出中双气层的形成机理及其对塑料微管形成的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The diameter of a micro-tube is very small and its wall thickness is very thin. Thus, when applying double-layer gas-assisted extrusion technology to process a micro-tube, it is necessary to find the suitable inlet gas pressure and a method for forming a stable double gas layer. In this study, a double-layer gas-assisted extrusion experiment is conducted and combined with a numerical simulation made by POLYFLOW to analyze the effect of inlet gas pressure on micro-tube extrusion molding and the rheological properties of the melt under different inlet gas pressures. A method of forming a stable double gas layer is proposed, and its formation mechanism is analyzed. The research shows that when the inlet gas pressure is large, the viscosity on the inner and outer wall surfaces of the melt is very low due to the effects of shear thinning, viscous dissipation, and the compression effect of the melt, so the melt does not easily adhere to the wall surface of the die, and a double gas layer can be formed. When the inlet gas pressure slowly decreases, the effects of shear thinning and viscous dissipation are weakened, but the gas and the melt were constantly displacing each other and reaching a new balanced state and the gas and melt changed rapidly and steadily in the process without sudden changes, so the melt still does not easily adhere to the wall of the die. Thus, in this experiment, we adjusted the inlet gas pressure to 5000 Pa first to ensure that the melt do not adhere to the wall surface and then slowly increased the inlet gas pressure to 10,000 Pa to reduce the viscosity of the melt. Lastly, we slowly decreased the inlet gas pressure to 1000 Pa to form a stable double gas layer. Using this method will not only facilitate the formation of a stable double gas layer, but can also accurately control the diameter of the micro-tube.
机译:微管的直径很小,壁厚也很薄。因此,当应用双层气体辅助挤出技术来处理微管时,需要找到合适的入口气体压力和形成稳定的双层气体层的方法。在这项研究中,进行了双层气体辅助挤出实验,并与POLYFLOW进行的数值模拟相结合,分析了进气压力对微管挤出成型的影响以及熔体在不同进气压力下的流变特性。 。提出了形成稳定的双气层的方法,并分析了其形成机理。研究表明,当进气压力较大时,由于剪切稀化,粘性耗散和熔体的压缩作用,熔体内壁和外壁表面的粘度非常低,因此熔体确实不容易附着在模具的壁面上,可以形成双气体层。当入口气体压力缓慢降低时,剪切稀化和粘性耗散的作用减弱,但气体和熔体不断移动并达到新的平衡状态,并且气体和熔体在过程中快速稳定地发生变化,而不会突然发生变化。发生变化,因此熔体仍不容易粘附在模具壁上。因此,在本实验中,我们首先将进气压力调节至5000 Pa,以确保熔体不粘附在壁表面上,然后将进气压力缓慢提高至10,000 Pa,以降低熔体的粘度。最后,我们将进气压力缓慢降低至1000 Pa,以形成稳定的双气层。使用这种方法不仅将有助于形成稳定的双重气体层,而且还可以精确地控制微管的直径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号