首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Long‐range molecular dynamics show that inactive forms of Protein Kinase A are more dynamic than active forms
【2h】

Long‐range molecular dynamics show that inactive forms of Protein Kinase A are more dynamic than active forms

机译:远程分子动力学表明蛋白激酶A的非活性形式比活性形式更具活力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Many protein kinases are characterized by at least two structural forms corresponding to the highest level of activity (active) and low or no activity, (inactive). Further, protein dynamics is an important consideration in understanding the molecular and mechanistic basis of enzyme function. In this work, we use protein kinase A (PKA) as the model system and perform microsecond range molecular dynamics (MD) simulations on six variants which differ from one another in terms of active and inactive form, with or without bound ligands, C‐terminal tail and phosphorylation at the activation loop. We find that the root mean square fluctuations in the MD simulations are generally higher for the inactive forms than the active forms. This difference is statistically significant. The higher dynamics of inactive states has significant contributions from ATP binding loop, catalytic loop, and αG helix. Simulations with and without C‐terminal tail show this differential dynamics as well, with lower dynamics both in the active and inactive forms if C‐terminal tail is present. Similarly, the dynamics associated with the inactive form is higher irrespective of the phosphorylation status of Thr 197. A relatively stable stature of active kinases may be better suited for binding of substrates and detachment of the product. Also, phosphoryl group transfer from ATP to the phosphosite on the substrate requires precise transient coordination of chemical entities from three different molecules, which may be facilitated by the higher stability of the active state.
机译:许多蛋白激酶的特征在于至少两种结构形式,分别对应于最高水平的活性(活性)和低水平或无活性(无活性)。此外,蛋白质动力学是理解酶功能的分子和机理基础的重要考虑因素。在这项工作中,我们使用蛋白激酶A(PKA)作为模型系统,并对六个变体进行微秒级分子动力学(MD)模拟,这些变体在有活性和无活性形式方面都有或没有结合配体C-末端尾巴和激活环上的磷酸化。我们发现,对于非活动形式,MD模拟中的均方根波动通常高于活动形式。这种差异具有统计意义。 ATP结合环,催化环和αG螺旋对非活性状态的较高动力学有重大贡献。具有和不具有C末端尾部的仿真也显示了这种差分动力学,如果存在C末端尾部,则无论是处于活动状态还是处于非活动形式,其动力学都较低。类似地,与无活性形式相关的动力学较高,而与Thr 197的磷酸化状态无关。活性激酶的相对稳定的身材可能更适合于底物的结合和产物的分离。同样,磷酰基从ATP转移到底物上的磷酸位点需要对来自三个不同分子的化学实体进行精确的瞬态配位,这可以通过活性状态的更高稳定性来促进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号