首页> 美国卫生研究院文献>Microorganisms >Genome-Scale Metabolic Network Reconstruction and In Silico Analysis of Hexanoic acid Producing Megasphaera elsdenii
【2h】

Genome-Scale Metabolic Network Reconstruction and In Silico Analysis of Hexanoic acid Producing Megasphaera elsdenii

机译:基因组规模的代谢网络的重建和己酸产生大球藻的计算机模拟分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hexanoic acid and its derivatives have been recently recognized as value-added materials and can be synthesized by several microbes. Of them, has been considered as an interesting hexanoic acid producer because of its capability to utilize a variety of carbons sources. However, the cellular metabolism and physiology of still remain uncharacterized. Therefore, in order to better understand hexanoic acid synthetic metabolism in , we newly reconstructed its genome-scale metabolic model, ME375, which accounts for 375 genes, 521 reactions, and 443 metabolites. A constraint-based analysis was then employed to evaluate cell growth under various conditions. Subsequently, a flux ratio analysis was conducted to understand the mechanism of bifurcated hexanoic acid synthetic pathways, including the typical fatty acid synthetic pathway via acetyl-CoA and the TCA cycle in a counterclockwise direction through succinate. The resultant metabolic states showed that the highest hexanoic acid production could be achieved when the balanced fractional contribution via acetyl-CoA and succinate in reductive TCA cycle was formed in various cell growth rates. The highest hexanoic acid production was maintained in the most perturbed flux ratio, as phosphoenolpyruvate carboxykinase ( ) enables the bifurcated pathway to form consistent fluxes. Finally, organic acid consuming simulations suggested that succinate can increase both biomass formation and hexanoic acid production.
机译:己酸及其衍生物最近被公认为是增值材料,可以由多种微生物合成。其中,由于其能够利用多种碳源,因此被认为是有趣的己酸生产商。然而,其的细胞代谢和生理学仍未表征。因此,为了更好地了解中的己酸合成代谢,我们重新构建了其基因组规模的代谢模型ME375,该模型包含375个基因,521个反应和443个代谢产物。然后基于约束的分析用于评估各种条件下的细胞生长。随后,进行了通量比分析,以了解分叉的己酸合成途径的机理,包括通过乙酰辅酶A进行的典型脂肪酸合成途径和逆时针穿过琥珀酸的TCA循环。所得的代谢状态表明,在各种细胞生长速率下,通过乙酰辅酶A和琥珀酸在TCA还原循环中的平衡分数贡献形成时,可以实现最高的己酸产量。最高的己酸产量保持在最不稳定的通量比下,因为磷酸烯醇丙酮酸羧化激酶()使分叉路径形成一致的通量。最后,有机酸消耗模拟表明琥珀酸酯可以增加生物量的形成和己酸的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号