首页> 美国卫生研究院文献>Materials >Hybrid Shape Memory Alloy-Based Nanomechanical Resonators for Ultrathin Film Elastic Properties Determination and Heavy Mass Spectrometry
【2h】

Hybrid Shape Memory Alloy-Based Nanomechanical Resonators for Ultrathin Film Elastic Properties Determination and Heavy Mass Spectrometry

机译:基于混合形状记忆合金的纳米机械谐振器用于超薄膜弹性性能测定和重质谱分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Micro-anomechanical resonators are often used in material science to measure the elastic properties of ultrathin films or mass spectrometry to estimate the mass of various chemical and biological molecules. Measurements with these sensors utilize changes in the resonant frequency of the resonator exposed to an investigated quantity. Their sensitivities are, therefore, determined by the resonant frequency. The higher resonant frequency and, correspondingly, higher quality factor ( -factor) yield higher sensitivity. In solution, the resonant frequency ( -factor) decreases causing a significant lowering of the achievable sensitivity. Hence, the nanomechanical resonator-based sensors mainly operate in a vacuum. Identification by nanomechanical resonator also requires an additional reference measurement on the identical unloaded resonator making experiments, due to limiting achievable accuracies in current nanofabrication processes, yet challenging. In addition, the mass spectrometry by nanomechanical resonator can be routinely performed for light analytes (i.e., analyte is modelled as a point particle). For heavy analytes such as bacteria clumps neglecting their stiffness result in a significant underestimation of determined mass values. In this work, we demonstrate the extraordinary capability of hybrid shape memory alloy (SMA)-based nanomechanical resonators to i) notably tune the resonant frequencies and improve -factor of the resonator immersed in fluid, ii) determine the Young’s (shear) modulus of prepared ultrathin film only from frequency response of the resonator with sputtered film, and iii) perform heavy analyte mass spectrometry by monitoring shift in frequency of just a single vibrational mode. The procedures required to estimate the Young’s (shear) modulus of ultrathin film and the heavy analyte mass from observed changes in the resonant frequency caused by a phase transformation in SMA are developed and, afterward, validated using numerical simulations. The present results demonstrate the outstanding potential and capability of high frequency operating hybrid SMA-based nanomechanical resonators in sensing applications that can be rarely achieved by current nanomechanical resonator-based sensors.
机译:微型/纳米机械谐振器在材料科学中通常用于测量超薄膜的弹性或通过质谱法来估算各种化学和生物分子的质量。这些传感器的测量利用了暴露于调查量的谐振器的谐振频率的变化。因此,它们的灵敏度取决于谐振频率。较高的谐振频率以及相应的较高品质因数(-factor)产生较高的灵敏度。在解决方案中,谐振频率(-因子)降低,导致可达到的灵敏度大大降低。因此,基于纳米机械谐振器的传感器主要在真空中操作。由于限制了当前纳米加工工艺中可达到的精度,因此通过纳米机械谐振器进行识别还需要对相同的无载谐振器制造实验进行额外的参考测量,但仍具有挑战性。另外,可以常规地对轻的分析物进行纳米机械共振器的质谱分析(即,将分析物建模为点粒子)。对于重的分析物(例如细菌团块),如果忽略其刚度,则会严重低估确定的质量值。在这项工作中,我们证明了基于混合形状记忆合金(SMA)的纳米机械谐振器的非凡能力,即i)显着调整谐振频率并提高浸入流体中的谐振器的系数,ii)确定材料的杨氏(剪切)模量。仅通过具有溅射膜的谐振器的频率响应来制备超薄膜,并且iii)仅通过监视单个振动模式的频率偏移来执行重分析物质谱。开发了通过观察到的由SMA中的相变引起的共振频率变化来估计超薄膜的杨氏(剪切)模量和重分析物质量所需的程序,然后使用数值模拟对其进行了验证。目前的结果表明,高频传感混合SMA基纳米机械谐振器在传感应用中具有突出的潜力和能力,而当前的基于纳米机械谐振器的传感器很少能够实现这种潜力和能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号