首页> 美国卫生研究院文献>mAbs >Process optimization and protein engineering mitigated manufacturing challenges of a monoclonal antibody with liquid-liquid phase separation issue by disrupting inter-molecule electrostatic interactions
【2h】

Process optimization and protein engineering mitigated manufacturing challenges of a monoclonal antibody with liquid-liquid phase separation issue by disrupting inter-molecule electrostatic interactions

机译:通过破坏分子间的静电相互作用工艺优化和蛋白质工程缓解了具有液-液相分离问题的单克隆抗体的生产挑战

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report a case study in which liquid-liquid phase separation (LLPS) negatively impacted the downstream manufacturability of a therapeutic mAb. Process parameter optimization partially mitigated the LLPS, but limitations remained for large-scale manufacturing. Electrostatic interaction driven self-associations and the resulting formation of high-order complexes are established critical properties that led to LLPS. Through chain swapping substitutions with a well-behaved antibody and subsequent study of their solution behaviors, we found the self-association interactions between the light chains (L s) of this mAb are responsible for the LLPS behavior. With the aid of homology modeling and charged-patch analysis, seven charged residues in the L complementarity-determining regions (CDRs) were selected for mutagenesis, then evaluated for self-association and LLPS properties. Two charged residues in the light chain (K30 and D50) were identified as the most significant to the LLPS behaviors and to the antigen-binding affinity. Four adjacent charged residues in the light chain (E49, K52, R53, and R92) also contributed to self-association, and thus to LLPS. Molecular engineering substitution of these charged residues with a neutral or oppositely-charged residue disrupted the electrostatic interactions. A double-mutation in CDR2 and CDR3 resulted in a variant that retained antigen-binding affinity and eliminated LLPS. This study demonstrates the critical nature of surface charged resides on LLPS, and highlights the applied power of protein design when applied to improving physiochemical characteristics of therapeutic antibodies. Our study indicates that design and effective protein engineering may be useful in the development of mAbs that encounter similar LLPS issues.
机译:我们报告了一个案例研究,其中液-液相分离(LLPS)对治疗性单克隆抗体的下游可制造性产生负面影响。工艺参数优化部分缓解了LLPS,但对于大规模制造仍然存在限制。静电相互作用驱动的自缔合以及由此形成的高阶络合物的形成是导致LLPS的关键特性。通过使用行为良好的抗体进行链交换取代并随后研究其溶液行为,我们发现该mAb轻链(L s)之间的自缔合相互作用是LLPS行为的原因。借助同源性建模和带电补丁分析,在L互补决定区(CDR)中选择了7个带电残基进行诱变,然后评估其自缔合和LLPS特性。轻链中两个带电荷的残基(K30和D50)被确定对LLPS行为和抗原结合亲和力最重要。轻链中的四个相邻带电残基(E49,K52,R53和R92)也有助于自缔合,因此也有助于LLPS。用中性或带相反电荷的残基对这些带电荷的残基进行分子工程取代会破坏静电相互作用。 CDR2和CDR3中的双突变导致保留了抗原结合亲和力并消除了LLPS的变异体。这项研究证明了表面电荷驻留在LLPS上的关键性质,并强调了蛋白质设计应用于改善治疗性抗体的理化特性时的应用能力。我们的研究表明,设计和有效的蛋白质工程可能在遇到类似LLPS问题的mAb的开发中很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号