首页> 美国卫生研究院文献>Heliyon >Design optimisation and reliability allocation for energy systems based on equipment function and operating capacity
【2h】

Design optimisation and reliability allocation for energy systems based on equipment function and operating capacity

机译:基于设备功能和运行能力的能源系统设计优化和可靠性分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Designers of energy systems often face challenges in balancing the trade-off between cost and reliability. In literature, several papers have presented mathematical models for optimizing the reliability and cost of energy systems. However, the previous models only addressed reliability implicitly, i.e., based on availability and maintenance planning. Others focused on allocation of reliability based on individual equipment requirements via non-linear models that require high computational effort. This work proposes a novel mixed-integer linear programming (MILP) model that combines the use of both input-output (I-O) modelling and linearized parallel system reliability expressions. The proposed MILP model can optimize the design and reliability of energy systems based on equipment function and operating capacity. The model allocates equipment with sufficient reliability to meet system functional requirements and determines the required capacity. A simple pedagogical example is presented in this work to illustrate the features of proposed MILP model. The MILP model is then applied to a polygeneration case study consisting of two scenarios. In the first scenario, the polygeneration system was optimized based on specified reliability requirements. The technologies chosen for Scenario 1 were the CHP module, reverse osmosis unit and vapour compression chiller. The total annualized cost (TAC) for Scenario 1 was 53.3 US$ million/year. In the second scenario, the minimum reliability level for heat production was increased. The corresponding results indicated that an additional auxiliary boiler must be operated to meet the new requirements. The resulting TAC for the Scenario 2 was 5.3% higher than in the first scenario.
机译:能源系统的设计人员经常面临在成本和可靠性之间进行权衡的挑战。在文献中,几篇论文提出了用于优化能源系统的可靠性和成本的数学模型。然而,先前的模型仅隐式地解决了可靠性,即基于可用性和维护计划。其他人则专注于通过非线性模型根据各个设备的要求分配可靠性,这需要大量的计算工作。这项工作提出了一种新颖的混合整数线性规划(MILP)模型,该模型结合了输入输出(I-O)建模和线性化并行系统可靠性表达式的使用。所提出的MILP模型可以根据设备功能和运行能力优化能源系统的设计和可靠性。该模型分配具有足够可靠性的设备以满足系统功能要求并确定所需的容量。在这项工作中提供了一个简单的教学示例,以说明所建议的MILP模型的功能。然后,将MILP模型应用于包含两个场景的多代案例研究。在第一种情况下,基于指定的可靠性要求优化了多联产系统。方案1选择的技术是CHP模块,反渗透装置和蒸气压缩冷却器。方案1的年度总费用(TAC)为53.3百万美元/年。在第二种情况下,提高了热量产生的最低可靠性级别。相应的结果表明,必须运行另外的辅助锅炉才能满足新要求。方案2的最终TAC比第一种方案高5.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号