首页> 美国卫生研究院文献>G3: GenesGenomesGenetics >Adaptation to Industrial Stressors Through Genomic and Transcriptional Plasticity in a Bioethanol Producing Fission Yeast Isolate
【2h】

Adaptation to Industrial Stressors Through Genomic and Transcriptional Plasticity in a Bioethanol Producing Fission Yeast Isolate

机译:通过基因组和转录可塑性在生物乙醇生产裂变酵母分离物中适应工业应激源。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

is a model unicellular eukaryote with ties to the basic research, oenology and industrial biotechnology sectors. While most investigations into cell biology utilize Leupold’s 972 laboratory strain background, recent studies have described a wealth of genetic and phenotypic diversity within wild populations of including stress resistance phenotypes which may be of interest to industry. Here we describe the genomic and transcriptomic characterization of Wilmar-P, an isolate used for bioethanol production from sugarcane molasses at industrial scale. Novel sequences present in Wilmar-P but not in the laboratory genome included multiple coding sequences with near-perfect nucleotide identity to sequences. Wilmar-P also contained a ∼100kb duplication in the right arm of chromosome III, a region harboring , the predominant hexose transporter encoding gene. Transcriptomic analysis of Wilmar-P grown in molasses revealed strong downregulation of core environmental stress response genes and upregulation of hexose transporters and drug efflux pumps compared to laboratory . Finally, examination of the regulatory network of Scr1, which is involved in the regulation of several genes differentially expressed on molasses, revealed expanded binding of this transcription factor in Wilmar-P compared to laboratory in the molasses condition. Together our results point to both genomic plasticity and transcriptomic adaptation as mechanisms driving phenotypic adaptation of Wilmar-P to the molasses environment and therefore adds to our understanding of genetic diversity within industrial fission yeast strains and the capacity of this strain for commercial scale bioethanol production.
机译:是模型单细胞真核生物,与基础研究,酿酒学和工业生物技术领域有联系。尽管大多数细胞生物学研究都是利用Leupold的972实验室菌株背景进行的,但最近的研究已经描述了野生种群中丰富的遗传和表型多样性,其中包括可能对工业产生抗逆性的表型。在这里,我们描述了Wilmar-P的基因组和转录组学表征,Wilmar-P是一种从甘蔗糖蜜中以工业规模生产生物乙醇的分离株。 Wilmar-P中存在但实验室基因组中不存在的新序列包括与序列具有近乎完美的核苷酸同一性的多个编码序列。 Wilmar-P在III号染色体的右臂也有一个约100kb的重复片段,该染色体是一个主要的己糖转运蛋白编码基因。对在糖蜜中生长的Wilmar-P进行的转录组学分析显示,与实验室相比,核心环境应激反应基因的强烈下调以及己糖转运蛋白和药物外排泵的上调。最后,与糖蜜条件下的实验室相比,Scr1调控网络的检查涉及糖蜜中差异表达的几个基因的调控,发现该转录因子在Wilmar-P中的结合扩展。我们的研究结果共同表明,基因组可塑性和转录组适应性是驱动Wilmar-P对糖蜜环境进行表型适应的机制,因此加深了我们对工业裂变酵母菌株内遗传多样性的理解,以及该菌株的商业规模生物乙醇生产能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号