首页> 美国卫生研究院文献>Brain Sciences >Dual Networks for High-Precision and High-Speed Registration of Brain Electron Microscopy Images
【2h】

Dual Networks for High-Precision and High-Speed Registration of Brain Electron Microscopy Images

机译:双网络用于脑电子显微镜图像的高精度和高速配准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It remains a mystery as to how neurons are connected and thereby enable use to think, and volume reconstruction from series of microscopy sections of brains is a vital technique in determining this connectivity. Image registration is a key component; the aim of image registration is to estimate the deformation field between two images. Current methods choose to directly regress the deformation field; however, this task is very challenging. It is common to trade off computational complexity with precision when designing complex models for deformation field estimation. This approach is very inefficient, leading to a long inference time. In this paper, we suggest that complex models are not necessary and solve this dilemma by proposing a dual-network architecture. We divide the deformation field prediction problem into two relatively simple subproblems and solve each of them on one branch of the proposed dual network. The two subproblems have completely opposite properties, and we fully utilize these properties to simplify the design of the dual network. These simple architectures enable high-speed image registration. The two branches are able to work together and make up for each other’s drawbacks, and no loss of accuracy occurs even when simple architectures are involved. Furthermore, we introduce a series of loss functions to enable the joint training of the two networks in an unsupervised manner without introducing costly manual annotations. The experimental results reveal that our method outperforms state-of-the-art methods in fly brain electron microscopy image registration tasks, and further ablation studies enable us to obtain a comprehensive understanding of each component of our network.
机译:关于神经元是如何连接的,从而使人们能够思考,仍然是个谜,而从大脑的一系列显微切片重建体积是确定这种连通性的一项至关重要的技术。图像配准是关键组成部分;图像配准的目的是估计两个图像之间的变形场。当前的方法选择直接回归变形场。但是,这项任务非常具有挑战性。在设计用于形变场估计的复杂模型时,通常需要在计算复杂性与精度之间进行权衡。这种方法效率很低,导致推理时间很长。在本文中,我们建议不需要复杂的模型,并通过提出双网络体系结构解决此难题。我们将变形场预测问题分为两个相对简单的子问题,并在提出的对偶网络的一个分支上解决每个子问题。这两个子问题具有完全相反的属性,我们充分利用这些属性来简化对偶网络的设计。这些简单的体系结构可以实现高速图像配准。这两个分支机构可以协同工作,弥补彼此的缺点,即使涉及简单的体系结构,也不会损失准确性。此外,我们引入了一系列损失函数,从而能够以无监督的方式对两个网络进行联合训练,而无需引入昂贵的手动注释。实验结果表明,在飞脑电子显微镜图像配准任务中,我们的方法优于最新方法,并且进一步的消融研究使我们能够全面了解网络的每个组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号