首页> 美国卫生研究院文献>Annals of Pediatric Endocrinology Metabolism >Skeletal mineralization: mechanisms and diseases
【2h】

Skeletal mineralization: mechanisms and diseases

机译:骨骼矿化:机理与疾病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Skeletal mineralization is initiated in matrix vesicles (MVs), the small extracellular vesicles derived from osteoblasts and chondrocytes. Calcium and inorganic phosphate (Pi) taken up by MVs form hydroxyapatite crystals, which propagate on collagen fibrils to mineralize the extracellular matrix. Insufficient calcium or phosphate impairs skeletal mineralization. Because active vitamin D is necessary for intestinal calcium absorption, vitamin D deficiency is a significant cause of rickets/osteomalacia. Chronic hypophosphatemia also results in rickets/osteomalacia. Excessive action of fibroblast growth factor 23 (FGF23), a key regulator of Pi metabolism, leads to renal Pi wasting and impairs vitamin D activation. X-linked hypophosphatemic rickets (XLH) is the most common form of hereditary FGF23-related hypophosphatemia, and enhanced FGF receptor (FGFR) signaling in osteocytes may be involved in the pathogenesis of this disease. Increased extracellular Pi triggers signal transduction via FGFR to regulate gene expression, implying a close relationship between Pi metabolism and FGFR. An anti-FGF23 antibody, burosumab, has recently been developed as a new treatment for XLH. In addition to various forms of rickets/osteomalacia, hypophosphatasia (HPP) is characterized by impaired skeletal mineralization. HPP is caused by inactivating mutations in tissue-nonspecific alkaline phosphatase, an enzyme rich in MVs. The recent development of enzyme replacement therapy using bone-targeting recombinant alkaline phosphatase has improved the prognosis, motor function, and quality of life in patients with HPP. This links impaired skeletal mineralization with various conditions, and unraveling its pathogenesis will lead to more precise diagnoses and effective treatments.
机译:骨骼矿化是在基质小泡(MVs)中开始的,基质小泡是由成骨细胞和软骨细胞衍生的小细胞外小泡。 MV吸收的钙和无机磷酸盐(Pi)形成羟基磷灰石晶体,该晶体在胶原纤维上传播以矿化细胞外基质。钙或磷酸盐不足会损害骨骼矿化。由于活性维生素D是肠道钙吸收所必需的,因此维生素D缺乏是病/骨软化症的重要原因。慢性低磷血症也可导致病/骨软化症。成纤维细胞生长因子23(FGF23)(Pi代谢的关键调节剂)的过度作用会导致肾脏Pi浪费并损害维生素D的活化。 X连锁低磷酸盐血症性rick病(XLH)是遗传性FGF23相关的低磷酸盐血症的最常见形式,骨细胞中增强的FGF受体(FGFR)信号传导可能与该疾病的发病机制有关。细胞外Pi的增加触发通过FGFR的信号转导,从而调节基因表达,这表明Pi代谢与FGFR之间存在密切的关系。最近已开发出一种抗FGF23抗体burosumab作为XLH的新疗法。除各种形式的病/骨软化症外,低磷血症(HPP)的特征是骨骼矿化受损。 HPP是由组织非特异性碱性磷酸酶(一种富含MV的酶)中的突变失活引起的。使用靶向骨的重组碱性磷酸酶进行酶替代疗法的最新进展改善了HPP患者的预后,运动功能和生活质量。这将骨骼矿化受损与各种情况联系起来,弄清其发病机理将导致更精确的诊断和有效的治疗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号