首页> 美国卫生研究院文献>Antioxidants >The Peroxidatic Thiol of Peroxiredoxin 1 is Nitrosated by Nitrosoglutathione but Coordinates to the Dinitrosyl Iron Complex of Glutathione
【2h】

The Peroxidatic Thiol of Peroxiredoxin 1 is Nitrosated by Nitrosoglutathione but Coordinates to the Dinitrosyl Iron Complex of Glutathione

机译:Peroxiredoxin 1的过氧化硫酚被亚硝基谷胱甘肽亚硝化但与谷胱甘肽的二亚硝基铁配合物协调

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein S-nitrosation is an important consequence of NO ·metabolism with implications in physiology and pathology. The mechanisms responsible for S-nitrosation in vivo remain debatable and kinetic data on protein S-nitrosation by different agents are limited. 2-Cys peroxiredoxins, in particular Prx1 and Prx2, were detected as being S-nitrosated in multiple mammalian cells under a variety of conditions. Here, we investigated the kinetics of Prx1 S-nitrosation by nitrosoglutathione (GSNO), a recognized biological nitrosating agent, and by the dinitrosyl-iron complex of glutathione (DNIC-GS; [Fe(NO) (GS) ] ), a hypothetical nitrosating agent. Kinetics studies following the intrinsic fluorescence of Prx1 and its mutants (C83SC173S and C52S) were complemented by product analysis; all experiments were performed at pH 7.4 and 25 ℃. The results show GSNO-mediated nitrosation of Prx1 peroxidatic residue ( = 15.4 ± 0.4 M . s ) and of Prx1 Cys residue ( = 1.7 ± 0.4 M . s ). The reaction of nitrosated Prx1 with GSH was also monitored and provided a second-order rate constant for Prx1Cys NO denitrosation of = 14.4 ± 0.3 M . s . In contrast, the reaction of DNIC-GS with Prx1 did not nitrosate the enzyme but formed DNIC-Prx1 complexes. The peroxidatic Prx1 Cys was identified as the residue that more rapidly replaces the GS ligand from DNIC-GS ( = 7.0 ± 0.4 M . s ) to produce DNIC-Prx1 ([Fe(NO) (GS)(Cys -Prx1)] ). Altogether, the data showed that in addition to S-nitrosation, the Prx1 peroxidatic residue can replace the GS ligand from DNIC-GS, forming stable DNIC-Prx1, and both modifications disrupt important redox switches.
机译:蛋白质S-亚硝化是NO代谢的重要结果,对生理和病理有影响。体内引起S-亚硝化的机制仍然值得商and,并且不同试剂对蛋白质S-亚硝化的动力学数据是有限的。在多种条件下,在多个哺乳动物细胞中检测到2-Cys过氧化物酶,特别是Prx1和Prx2被S-亚硝化。在这里,我们调查了被认为是生物亚硝化剂的亚硝基谷胱甘肽(GSNO)和谷胱甘肽的二亚硝基-铁络合物(DNIC-GS; [Fe(NO)(GS)]),这是一种假设的Prx1 S亚硝化的动力学亚硝化剂。 Prx1及其突变体(C83SC173S和C52S)固有荧光后的动力学研究得到了产物分析的补充;所有实验均在pH 7.4和25℃下进行。结果表明,GSNO介导的Prx1过氧化残基(= 15.4±0.4 M.s)和Prx1 Cys残基(= 1.7±0.4 M.s)的亚硝化。还监测了亚硝化的Prx1与GSH的反应,并为Prx1Cys NO的亚硝化提供了14.4±0.3 M的二级速率常数。 s。相反,DNIC-GS与Prx1的反应未亚硝化酶,但形成了DNIC-Prx1络合物。过氧化物Prx1 Cys被鉴定为可以更快速地替换DNIC-GS(= 7.0±0.4 M.s)的GS配体以产生DNIC-Prx1([Fe(NO)(GS)(Cys -Prx1)])的残基。总体而言,数据显示,除了S亚硝化作用外,Prx1过氧化物残基还可以替代DNIC-GS的GS配体,形成稳定的DNIC-Prx1,并且两种修饰都破坏了重要的氧化还原开关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号