首页> 美国卫生研究院文献>Advanced Science >Porous g‐C3N4 and MXene Dual‐Confined FeOOH Quantum Dots for Superior Energy Storage in an Ionic Liquid
【2h】

Porous g‐C3N4 and MXene Dual‐Confined FeOOH Quantum Dots for Superior Energy Storage in an Ionic Liquid

机译:多孔g-C3N4和MXene双限制FeOOH量子点可在离子液体中实现出色的能量存储

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Owing to their unique nanosize effect and surface effect, pseudocapacitive quantum dots (QDs) hold considerable potential for high‐efficiency supercapacitors (SCs). However, their pseudocapacitive behavior is exploited in aqueous electrolytes with narrow potential windows, thereby leading to a low energy density of the SCs. Here, a film electrode based on dual‐confined FeOOH QDs (FQDs) with superior pseudocapacitive behavior in a high‐voltage ionic liquid (IL) electrolyte is put forward. In such a film electrode, FQDs are steadily dual‐confined in a 2D heterogeneous nanospace supported by graphite carbon nitride (g‐C N ) and Ti‐MXene (Ti C ). Probing of potential‐driven ion accumulation elucidates that strong adsorption occurs between the IL cation and the electrode surface with abundant active sites, providing sufficient redox reaction of FQDs in the film electrode. Furthermore, porous g‐C N and conductive Ti C act as ion‐accessible channels and charge‐transfer pathways, respectively, endowing the FQDs‐based film electrode with favorable electrochemical kinetics in the IL electrolyte. A high‐voltage flexible SC (FSC) based on an ionogel electrolyte is fabricated, exhibiting a high energy density (77.12 mWh cm ), a high power density, a remarkable rate capability, and long‐term durability. Such an FSC can also be charged by harvesting sustainable energy and can effectively power various wearable and portable electronics.
机译:由于其独特的纳米尺寸效应和表面效应,伪电容量子点(QD)在高效超级电容器(SC)方面具有巨大潜力。然而,它们的假电容行为被用于具有窄电势窗口的水性电解质中,从而导致SC的低能量密度。在此,提出了一种基于双约束FeOOH QD(FQD)的薄膜电极,该薄膜电极在高压离子液体(IL)电解质中具有优异的伪电容特性。在这种薄膜电极中,FQD稳定地双重约束在由石墨碳氮化物(g-C N)和Ti-MXene(Ti C)支撑的二维异质纳米空间中。电位驱动的离子积累的探测表明,在IL阳离子和具有丰富活性位点的电极表面之间会发生强吸附,从而在膜电极中提供了足够的FQD氧化还原反应。此外,多孔g‐C N和导电Ti C分别充当离子可访问的通道和电荷转移途径,使基于FQDs的薄膜电极在IL电解质中具有良好的电化学动力学。制备了基于离子凝胶电解质的高压柔性SC(FSC),它具有高能量密度(77.12 mWh cm),高功率密度,显着的倍率能力和长期耐用性。这样的FSC也可以通过收集可持续能源来充电,并且可以有效地为各种可穿戴和便携式电子设备供电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号