首页> 美国卫生研究院文献>Advanced Science >Enhanced Biophotocurrent Generation in Living Photosynthetic Optical Resonator
【2h】

Enhanced Biophotocurrent Generation in Living Photosynthetic Optical Resonator

机译:活体光合光学谐振器中增强的生物光电流产生

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bioenergy from photosynthetic living organisms is a potential solution for energy‐harvesting and bioelectricity‐generation issues. With the emerging interest in biophotovoltaics, extracting electricity from photosynthetic organisms remains challenging because of the low electron‐transition rate and photon collection efficiency due to membrane shielding. In this study, the concept of “photosynthetic resonator” to amplify biological nanoelectricity through the confinement of living microalgae ( sp.) in an optical microanocavity is demonstrated. Strong energy coupling between the Fabry–Perot cavity mode and photosynthetic resonance offers the potential of exploiting optical resonators to amplify photocurrent generation as well as energy harvesting. Biomimetic models and living photosynthesis are explored in which the power is increased by almost 600% and 200%, respectively. Systematic studies of photosystem fluorescence and photocurrent are simultaneously carried out. Finally, an optofluidic‐based photosynthetic device is developed. It is envisaged that the key innovations proposed in this study can provide comprehensive insights in biological‐energy sciences, suggesting a new avenue to amplify electrochemical signals using an optical cavity. Promising applications include photocatalysis, photoelectrochemistry, biofuel devices, and sustainable optoelectronics.
机译:来自光合作用生物的生物能是解决能量收集和生物发电问题的潜在解决方案。随着对生物光伏技术的兴起,从光合生物中提取电能仍然具有挑战性,因为由于膜屏蔽的原因,其电子跃迁速率和光子收集效率较低。在这项研究中,“光合共振器”的概念通过在光学微/纳米腔中限制活的微藻类(sp。)来放大生物纳米电得到了证明。法布里-珀罗腔模和光合作用之间的强大能量耦合提供了利用光学谐振器来放大光电流产生和能量收集的潜力。探索了仿生模型和活体光合作用,其中功率分别增加了近600%和200%。同时进行光系统荧光和光电流的系统研究。最后,开发了一种基于光流体的光合装置。可以预见的是,这项研究中提出的关键创新可以提供生物能源科学方面的全面见解,从而为利用光腔放大电化学信号提供了一条新途径。有希望的应用包括光催化,光电化学,生物燃料装置和可持续的光电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号