首页> 美国卫生研究院文献>other >Structure Based Engineering of Internal Cavities in Coiled-Coil Peptides
【2h】

Structure Based Engineering of Internal Cavities in Coiled-Coil Peptides

机译:螺旋线圈肽内腔的基于结构的工程设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cavities and clefts are frequently important sites of interaction between natural enzymes or receptors with their corresponding substrate or ligand molecules and exemplify the types of molecular surfaces that would facilitate engineering artificial catalysts and receptors. Even so, structural characterizations of designed cavities are rare. To address this issue, we performed a systematic study of the structural effects of single amino acid substitutions within the hydrophobic cores of tetrameric coiled-coil peptides. Peptides containing single glycine, serine, alanine, or threonine amino acid substitutions at the buried L9, L16, L23, and I26 hydrophobic core positions of a GCN4-based sequence were synthesized and studied by solution-phase and crystallographic techniques. All peptides adopt the expected tetrameric state and contain tunnels or internal cavities ranging in size from 80 Å3 to 370 Å3. Two closely-related sequences containing an L16G substitution, one of which adopts an antiparallel configuration and one of which adopts a parallel configuration, illustrate that cavities of different volumes and shapes can be engineered from identical core substitutions. Finally, we demonstrate that two of the peptides (L9G and L9A) bind the small molecule iodobenzene when present during crystallization, leaving the general peptide quaternary structure intact but altering the local peptide conformation and certain superhelical parameters. These high-resolution descriptions of varied molecular surfaces within solvent-occluded internal cavities illustrate the breadth of design space available in even closely-related peptides and offer valuable models for the engineering of de novo helical proteins.
机译:空腔和裂口通常是天然酶或受体与其对应的底物或配体分子之间相互作用的重要部位,并举例说明了有助于工程化人工催化剂和受体的分子表面类型。即便如此,设计腔体的结构表征还是很少的。为了解决这个问题,我们对四聚体卷曲螺旋肽的疏水核内单个氨基酸取代的结构效应进行了系统的研究。合成了基于GCN4序列的L9,L16,L23和I26疏水核心位置处包含单个甘氨酸,丝氨酸,丙氨酸或苏氨酸氨基酸取代的肽,并通过溶液相和晶体学技术对其进行了研究。所有肽均采用预期的四聚体状态,并具有从80Å 3 到370Å 3 的大小的隧道或内部空腔。包含L16G取代的两个紧密相关的序列(其中一个采用反平行构型,其中一个采用平行构型)说明,可以从相同的核心取代中改造出不同体积和形状的空腔。最后,我们证明了在结晶过程中存在时,其中两种肽(L9G和L9A)与小分子碘苯结合,保留了一般肽的四级结构,但改变了局部肽的构象和某些超螺旋参数。这些对溶剂闭塞的内部空腔内各种分子表面的高分辨率描述说明了即使紧密相关的肽也可利用的设计空间的广度,并为从头螺旋蛋白的工程设计提供了有价值的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号