首页> 美国卫生研究院文献>other >Multimodal Pressure Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation
【2h】

Multimodal Pressure Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation

机译:多峰压力流分析:希尔伯特·黄变换在脑血流调节中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique “Multi-Modal Pressure Flow method (MMPF)” that utilizes Hilbert-Huang transformation to quantify dynamic cerebral autoregulation (CA) by studying interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The influence of CA is traditionally assessed from the relationship between the well-pronounced systemic BP and BFV oscillations induced by clinical tests. Reliable noninvasive assessment of dynamic CA, however, remains a challenge in clinical and diagnostic medicine.In this brief review we: 1) present an overview of transfer function analysis (TFA) that is traditionally used to quantify CA; 2) describe the a MMPF method and its modifications; 3) introduce a newly developed automatic algorithm and engineering aspects of the improved MMPF method; and 4) review clinical applications of MMPF and its sensitivity for detection of CA abnormalities in clinical studies. The MMPF analysis decomposes complex nonstationary BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we recently showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA. In addition, the new technique enables reliable assessment of CA using both data collected during clinical test and spontaneous BP/BFV fluctuations during baseline resting conditions.
机译:量化两个非平稳信号之间的非线性相互作用在不同的研究领域提出了计算难题,尤其是对于生理系统的评估。基于平稳信号理论的传统方法无法解决与非平稳性相关的问题,因此无法可靠地评估生理系统中的非线性相互作用。在这篇综述中,我们讨论了一种新技术“多模态压力流方法(MMPF)”,该技术利用希尔伯特-黄变换通过研究非平稳性脑血流速度(BFV)与血压(BP)之间的相互作用来量化动态脑自动调节(CA) )。 CA是一种重要的机制,负责控制一些心跳内系统性BP波动引起的脑血流量。传统上,CA的影响是通过临床测试引起的系统性BP与BFV振荡之间的关系来评估的。然而,对动态CA的可靠无创评估仍然是临床和诊断医学中的一个挑战。在本简短的综述中,我们:1)概述了传统上用于量化CA的传递函数分析(TFA)的概述; 2)描述一种MMPF方法及其修改; 3)介绍了新开发的自动算法和改进的MMPF方法的工程方面;和4)回顾MMPF的临床应用及其在临床研究中检测CA异常的敏感性。 MMPF分析将复杂的非平稳BP和BFV信号自适应地分解为多个经验模式,从而可以在相应的经验模式下表示由特定生理过程引起的波动。使用这项技术,我们最近表明,动态CA可以通过分解的BP和BFV振荡之间的特定相位延迟来表征,并且在CA受损的高血压,糖尿病和中风患者中,相移显着降低。此外,这项新技术还可以使用临床测试期间收集的数据以及基线静息状态下自发的BP / BFV波动来对CA进行可靠的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号