首页> 美国卫生研究院文献>other >Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease
【2h】

Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease

机译:与HIV-1蛋白酶灭活突变体紧密结合的肽段的计算设计和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable for thermodynamic studies as well as to explore whether the structural envelope observed for substrate peptides is a function of weak binding. Here, two computational methods — namely, charge optimization and protein design — were applied to identify peptide sequences predicted to have higher binding affinity to the inactivated protease, starting from an RT–RH derived substrate peptide. Of the candidate designed peptides, three were tested for binding with isothermal titration calorimetry, with one, containing a single threonine to valine substitution, measured to have more than a ten-fold improvement over the tightest binding natural substrate. Crystal structures were also obtained for the same three designed peptide complexes; they show good agreement with computational prediction. Thermodynamic studies show that binding is entropically driven, more so for designed affinity enhanced variants than for the starting substrate. Structural studies show strong similarities between natural and tighter-binding designed peptide complexes, which may have implications in understanding the molecular mechanisms of drug resistance in HIV-1 protease.
机译:HIV-1蛋白酶中的耐药性是有效治疗的障碍,通常是由酶中的突变引起的,该突变破坏了抑制剂的结合,但仍允许进行底物处理。用突变的无活性酶进行的结构研究已经提供了有关底物如何与蛋白酶结合而避免抗性突变的详细信息。获得的见解为下一代疗法的发展提供了信息。尽管已经获得了底物肽和灭活的(D25N)蛋白酶之间复合物的结构,但由于亲和力低,对肽结合的热力学研究仍具有挑战性。与灭活的蛋白酶比天然底物更紧密结合的肽对于热力学研究以及探索底物肽观察到的结构包膜是否是弱结合的功能都是有价值的。在这里,从RT–RH衍生的底物肽开始,应用了两种计算方法(即电荷优化和蛋白质设计)来鉴定预测对灭活蛋白酶具有更高结合亲和力的肽序列。在候选设计的肽中,用等温滴定热法测试了三种肽的结合,其中一种含有单个苏氨酸到缬氨酸取代,经测量比最紧密结合的天然底物提高了十倍以上。对于相同的三种设计的肽复合物,也获得了晶体结构。它们与计算预测显示出良好的一致性。热力学研究表明,结合是由熵驱动的,对于设计的亲和力增强的变体,与起始底物相比更是如此。结构研究表明,天然和紧密结合设计的肽复合物之间存在强烈的相似性,这可能对理解HIV-1蛋白酶中耐药性的分子机制有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号