首页> 美国卫生研究院文献>other >Determining under- and oversampling of individual particle distributions in microfluidic electrophoresis with orthogonal laser-induced fluorescence detection
【2h】

Determining under- and oversampling of individual particle distributions in microfluidic electrophoresis with orthogonal laser-induced fluorescence detection

机译:正交激光诱导荧光检测法测定微流电泳中单个颗粒分布的欠采样和过采样

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This report investigates the effects of sample size on the separation and analysis of individual biological particles using microfluidic devices equipped with an orthogonal LIF detector. A detection limit of 17 ± 1 molecules of fluorophore is obtained using this orthogonal LIF detector under a constant flow of fluorescein, which is a significant improvement over epifluorescence, the most common LIF detection scheme used with microfluidic devices. Mitochondria from rat liver tissue and cultured 143B osteosarcoma cells are used as model biological particles. Quantile–quantile (q–q) plots were used to investigate changes in the distributions. When the number of detected mitochondrial events became too large (>72 for rat liver and >98 for 143B mitochondria), oversampling occurs. Statistical overlap theory is used to suggest that the cause of oversampling is that separation power of the microfluidic device presented is not enough to adequately separate large numbers of individual mitochondrial events. Fortunately, q–q plots make it possible to identify and exclude these distributions from data analysis. Additionally, when the number of detected events became too small (<55 for rat liver and <81 for 143B mitochondria) there were not enough events to obtain a statistically relevant mobility distribution, but these distributions can be combined to obtain a statistically relevant electrophoretic mobility distribution.
机译:本报告调查了样品大小对使用配备正交LIF检测器的微流控设备分离和分析单个生物颗粒的影响。使用这种正交LIF检测器,在恒定的荧光素流量下,检测限为17±1个分子的荧光团,这是对落射荧光的重大改进,而落射荧光是微流体设备最常用的LIF检测方案。来自大鼠肝组织的线粒体和培养的143B骨肉瘤细胞用作模型生物颗粒。分位数-分位数(q-q)图用于调查分布的变化。当检测到的线粒体事件数量过多时(对于大鼠肝脏,> 72,对于143B线粒体,> 98),则会发生过采样。统计重叠理论用于表明过采样的原因是所提供的微流体装置的分离能力不足以充分分离大量单独的线粒体事件。幸运的是,q-q图可以识别并从数据分析中排除这些分布。此外,当检测到的事件数量太少时(对于大鼠肝脏,<55,对于143B线粒体,<81),没有足够的事件获得统计上相关的迁移率分布,但是可以将这些分布组合起来以获得统计上相关的电泳迁移率分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号