首页> 美国卫生研究院文献>other >Numerical simulations of localized high field 1H MR spectroscopy
【2h】

Numerical simulations of localized high field 1H MR spectroscopy

机译:局部高场1H MR光谱的数值模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The limited bandwidths of volume selective RF pulses in localized in vivo MRS experiments introduce spatial artifacts that complicate spectral quantification of J-coupled metabolites. These effects are commonly referred to as a spatial interference or “4 compartment” artifacts and are more pronounced at higher field strengths. The main focus of this study is to develop a generalized approach to numerical simulations that combines full density matrix calculations with 3D localization to investigate the spatial artifacts and to provide accurate prior knowledge for spectral fitting. Full density matrix calculations with 3D localization using experimental pulses were carried out for PRESS (TE=20, 70 ms), STEAM (TE=20, 70 ms) and LASER (TE=70 ms) pulse sequences and compared to non-localized simulations and to phantom solution data at 4 Tesla. Additional simulations at 1.5 and 7 Tesla were carried out for STEAM and PRESS (TE=20 ms). Four brain metabolites that represented a range from weak to strong J-coupling networks were included in the simulations (lactate, N-acetylaspartate, glutamate and myo-inositol). For longer TE, full 3D localization was necessary to achieve agreement between the simulations and phantom solution spectra for the majority of cases in all pulse sequence simulations. For short echo time (TE=20 ms), ideal pulses without localizing gradients gave results that were in agreement with phantom results at 4 T for STEAM, but not for PRESS (TE=20). Numerical simulations that incorporate volume localization using experimental RF pulses are shown to be a powerful tool for generation of accurate metabolic basis sets for spectral fitting and for optimization of experimental parameters.
机译:局部体内MRS实验中体积选择性RF脉冲的有限带宽引入了空间伪影,这些伪影使J耦合代谢物的光谱定量变得复杂。这些效应通常称为空间干扰或“ 4格”伪影,在较高的场强下更为明显。这项研究的主要重点是开发一种通用的数值模拟方法,该方法将全密度矩阵计算与3D定位相结合,以研究空间伪像并为光谱拟合提供准确的先验知识。对PRESS(TE = 20,70 ms),STEAM(TE = 20,70 ms)和LASER(TE = 70 ms)脉冲序列进行了使用实验脉冲的3D局部全密度矩阵计算,并与非局部模拟进行了比较并模拟4 Tesla的解决方案数据。针对蒸汽和压力(TE = 20 ms)在1.5和7 Tesla下进行了附加仿真。模拟中包括从弱J耦合网络到强J耦合网络的四种大脑代谢物(乳酸,N-乙酰天门冬氨酸,谷氨酸和肌醇)。对于更长的TE,对于所有情况下的所有脉冲序列仿真,大多数情况下都必须进行完整的3D定位,以使仿真和幻像解决方案光谱之间达到一致。对于短的回波时间(TE = 20 ms),没有局部梯度的理想脉冲给出的结果与STEAM在4 T时的幻像结果相符,而对于PRESS(TE = 20)则不然。结合使用实验RF脉冲进行体积定位的数值模拟显示,它是生成精确的代谢基础集以进行光谱拟合和优化实验参数的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号