首页> 美国卫生研究院文献>other >Investigations of the Mechanism of Gold Nanoparticle Stability and Surface Functionalization in Capillary Electrophoresis
【2h】

Investigations of the Mechanism of Gold Nanoparticle Stability and Surface Functionalization in Capillary Electrophoresis

机译:毛细管电泳中金纳米颗粒稳定性和表面功能化机理的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Covalently functionalized gold nanoparticles influence capillary electrophoresis separations of neurotransmitters in a concentration and surface chemistry–dependent manner. Gold nanoparticles with either primarily covalently functionalized carboxylic acid (Au@COOH) or amine (Au@NH2) surface groups are characterized using extinction spectroscopy, transmission electron microscopy, and zeta potential measurements. The impact the presence of nanoparticles and their surface chemistry is investigated, and at least three nanoparticle-specific mechanisms are found to effect separations. First, the degree of nanoparticle-nanoparticle interactions is quantified using a new parameter termed the critical nanoparticle concentration (CNC). CNC is defined as the lowest concentration of nanoparticles that induces predominant nanoparticle aggregation under specific buffer conditions and is determined using dual-wavelength photodiode array detection. Once the CNC has been exceeded, reproducible separations are no longer observed. Second, nanoparticle-analyte interactions are dictated by electrostatic interactions which depend on the pKa of the analyte and surface charge of the nanoparticle. Finally, nanoparticle-capillary interactions occur in a surface chemistry dependent manner. Run buffer viscosity is influenced by the formation of a nanoparticle steady-state pseudo-stationary phase along the capillary wall. Despite differences in buffer viscosity leading to changes in neurotransmitter mobilities, no significant changes in electroosmotic flow were observed. As a result of these three nanoparticle-specific interactions, Au@NH2 nanoparticles increase the mobility of the neurotransmitters while a smaller opposite effect is observed for Au@COOH nanoparticles. Understanding nanoparticle behavior in the presence of an electric field will have significant impacts in separation science where nanoparticles can serve to improve either the mobility or detection sensitivity of target molecules.
机译:共价官能化的金纳米颗粒以浓度和表面化学依赖性的方式影响神经递质的毛细管电泳分离。使用消光光谱,透射电子显微镜和ζ电势测量对具有主要共价官能化的羧酸(Au @ COOH)或胺(Au @ NH2)表面基团的金纳米颗粒进行表征。研究了纳米粒子的存在及其表面化学的影响,并且发现至少三种特定于纳米粒子的机制可实现分离。首先,使用称为临界纳米粒子浓度(CNC)的新参数对纳米粒子与纳米粒子的相互作用程度进行定量。 CNC被定义为在特定缓冲液条件下诱导主要纳米颗粒聚集的最低纳米颗粒浓度,并使用双波长光电二极管阵列检测来确定。一旦超过了CNC,就不再观察到可重复的分离。第二,纳米颗粒与分析物的相互作用是由静电相互作用决定的,静电相互作用取决于分析物的pKa和纳米颗粒的表面电荷。最后,纳米颗粒-毛细管相互作用以表面化学依赖性方式发生。运行缓冲液粘度受沿毛细管壁的纳米颗粒稳态伪平稳相形成的影响。尽管缓冲液粘度不同导致神经递质运动性发生改变,但电渗流未见明显变化。由于这三种纳米颗粒特异性相互作用,Au @ NH2纳米颗粒增加了神经递质的迁移率,而Au @ COOH纳米颗粒的反向作用较小。了解电场存在下的纳米颗粒行为将对分离科学产生重大影响,在分离科学中,纳米颗粒可用于改善目标分子的迁移率或检测灵敏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号