首页> 外文学位 >Covalently functionalized gold nanoparticles: Synthesis, characterization, and integration into capillary electrophoresis.
【24h】

Covalently functionalized gold nanoparticles: Synthesis, characterization, and integration into capillary electrophoresis.

机译:共价官能化的金纳米颗粒:合成,表征和整合到毛细管电泳中。

获取原文
获取原文并翻译 | 示例

摘要

Nanomaterials are widely used as pseudostationary and stationary phases in electrically driven separations. The advantages of using nanomaterials are numerous including tunable sizes, multiple core compositions, flexible injection schemes, and diverse surface chemistries. Nanomaterials, however, exhibit large surface energies which induce aggregation and may yield unpredictable function in separations. Because nanomaterials can modify buffer conductivity, viscosity, and pH; successful and systematic incorporation of nanomaterials into separations requires rigorous synthetic control and characterization of both the nanoparticle core and surface chemistry.;This dissertation investigates the impact of gold nanoparticle surface chemistry and morphology to capillary electrophoresis separations. Gold nanoparticle core composition, shape, size, self assembled monolayer (SAM) formation, and SAM packing density are quantified for gold nanoparticles functionalized with thioctic acid, 6-mercaptohexanoic acid, or 11-mercaptoundecanoic acid SAMs. TEM, 1H NMR, extinction spectroscopy, zeta potential, X-ray photoelectron spectroscopy, and flocculation assess the morphology, surface chemistry, optical properties, surface charge, SAM packing density, and stability of the nanoparticles, respectively.;Using well-characterized nanostructures, pseudostationary phases of gold nanoparticles in capillary electrophoresis are studied. Gold nanoparticles functionalized with thioctic acid and either 6-mercaptohexanoic acid or 6-aminohexanethiol impact the mobility of analytes in a concentration and surface chemistry-dependent manner. From these data, a novel parameter termed the critical nanoparticle concentration is developed and is used to estimate nanoparticle stability during capillary electrophoresis separations.;To understand the function of carboxylated gold nanoparticles in capillary electrophoresis, extended DLVO theory is used to model interparticle interactions. Nanoparticle aggregation leads to electron tunneling between nanoparticles thereby taking on bulk electrical properties which cause measured currents to increase for nanoparticles functionalized with poorly ordered SAMs. Nanoparticles functionalized with well-ordered SAMs main their nanoscale properties and reduce measured currents during electrically driven flow.;Finally, carboxylic acid functionalized gold nanoparticles effect the separation of target biomarkers in both a SAM composition and surface coverage dependent manner. These effects are most systematic with well ordered SAMs. To understand the separation mechanism functionalized gold nanoparticles exhibit, their &zgr; potential with and without dopamine are evaluated. Large dopamine concentrations neutralize the three functionalized gold nanoparticles according to a dose response curve. The positively charged dopamine molecules saturate the negatively charged nanoparticle surfaces thereby providing a plausible explanation to the observed biomarker concentration trends. These data and future work provide a rigorous experimental and theoretical evaluation of nanoparticle structure impacts their function as pseudostationary phases in separations and other applications.
机译:纳米材料被广泛用作电驱动分离中的伪平稳相和固定相。使用纳米材料的优点很多,包括可调大小,多种芯组成,灵活的注射方案以及多种表面化学。然而,纳米材料表现出大的表面能,其诱导聚集并且可能在分离中产生不可预测的功能。因为纳米材料可以改变缓冲液的电导率,粘度和pH;纳米材料成功地,系统地结合到分离物中需要对纳米颗粒的核心和表面化学进行严格的合成控制和表征。;本论文研究了金纳米颗粒的表面化学和形态对毛细管电泳分离的影响。对于用硫辛酸,6-巯基己酸或11-巯基癸酸SAMs功能化的金纳米颗粒,对金纳米颗粒的核心成分,形状,大小,自组装单层(SAM)形成和SAM堆积密度进行了定量。 TEM,1H NMR,消光光谱,ζ电势,X射线光电子能谱和絮凝分别评估纳米粒子的形态,表面化学,光学性质,表面电荷,SAM堆积密度和稳定性。;使用特征明确的纳米结构,研究了毛细管电泳中金纳米颗粒的假平稳相。用硫辛酸和6-巯基己酸或6-氨基己硫醇官能化的金纳米颗粒以浓度和表面化学依赖性方式影响分析物的迁移率。从这些数据中,开发了一个称为临界纳米粒子浓度的新参数,该参数用于估计毛细管电泳分离过程中的纳米粒子稳定性。为了了解羧化金纳米粒子在毛细管电泳中的功能,扩展的DLVO理论被用于模拟粒子间的相互作用。纳米粒子的聚集导致纳米粒子之间的电子隧穿,从而呈现出大量的电学性质,这导致被不良SAM官能化的纳米粒子的实测电流增加。用有序的SAMs功能化的纳米颗粒主要具有纳米级的特性,并在电驱动的流动过程中降低了测量的电流。最后,羧酸功能化的金纳米颗粒以SAM组成和依赖于表面覆盖的方式影响目标生物标志物的分离。对于顺序良好的SAM,这些影响是最系统的。要了解功能化的金纳米颗粒表现出的分离机理,它们的&zgr;有和没有多巴胺的潜力进行了评估。根据剂量反应曲线,高浓度的多巴胺会中和三个官能化的金纳米粒子。带正电的多巴胺分子会使带负电的纳米颗粒表面饱和,从而为观察到的生物标志物浓度趋势提供了合理的解释。这些数据和未来的工作提供了对纳米颗粒结构影响其在分离和其他应用中作为伪平稳相的功能的严格实验和理论评估。

著录项

  • 作者

    Ivanov, Michael Robert.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Chemistry Analytical.;Nanoscience.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号