首页> 美国卫生研究院文献>other >The Tooth Enamel Protein Porcine Amelogenin Is an Intrinsically Disordered Protein with an Extended Molecular Configuration in the Monomeric Form
【2h】

The Tooth Enamel Protein Porcine Amelogenin Is an Intrinsically Disordered Protein with an Extended Molecular Configuration in the Monomeric Form

机译:牙齿的珐琅质蛋白猪牙釉蛋白是一种本质无序蛋白具有扩展的分子构型的单体形式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Amelogenins make up a class of proteins associated with the formation of mineralized enamel in vertebrates, possess highly conserved N- and C-terminal sequence regions, and represent an interesting model protein system for understanding biomineralization and protein assembly. Using bioinformatics, we report here the identification of molecular traits that classify 12 amelogenin proteins as members of the intrinsically disordered or unstructured protein family (IDPs), a group of proteins that normally exist as unfolded species but are capable of transformation to a folded state as part of their overall function. Using biophysical techniques (CD and NMR), we follow up on our bioinformatics studies and confirm that one of the amelogenins, recombinant porcine rP172, exists in an extended, unfolded state in the monomeric form. This protein exhibits evidence of conformational exchange between two states, and this exchange may be mediated by Pro residues in the sequence. Although the protein is globally unfolded, we detect the presence of local residual secondary structure [α-helix, extended β-strand, turn/loop, and polyproline type II (PPII)] that may serve several functional roles within the enamel matrix. The extended, labile conformation of rP172 amelogenin is compatible with the known functions of amelogenin in enamel biomineralization, i.e., self-assembly, associations with other enamel matrix proteins and with calcium phosphate biominerals, and interaction with cell receptors. It is likely that the labile structure of this protein facilitates interactions of amelogenin with other macromolecules or with minerals for achievement of internal protein stabilization.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号