首页> 美国卫生研究院文献>other >Targeting Retinal and Choroid Neovascularization Using the Small Molecule Inhibitor Carboxyamidotriazole
【2h】

Targeting Retinal and Choroid Neovascularization Using the Small Molecule Inhibitor Carboxyamidotriazole

机译:使用小分子抑制剂羧基脒三唑靶向视网膜和脉络膜新生血管形成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neovascular ocular diseases as exemplified by proliferative diabetic retinopathy(PDR), exudative age-related macular degeneration (AMD), and retinopathy of prematurity (ROP) are severe diseases affecting all age groups in the US. We asked whether a small molecule, carboxyamidotriazole (CAI) known for its anti-angiogenic and anti-tumor effects and its ability to be administered orally in humans, could have anti-angiogenic effects in ocular in vitro and in vivo angiogenesis models. The anti-proliferative effects of CAI were examined by BrdU incorporation using human retinal and dermal endothelial cells and human pigment epithelial cells. The effect of CAI was determined using the Matrigel tube formation assay. The mouse model of choroidal neovascularization (CNV) initiated by laser rupture of Bruch’s membrane was used to quantify in vivo effects of aqueous beta-hydroxypropyl cyclodextrin (bHPCD) formulations of CAI on neovascularization. The pharmacokinetics (PK) of CAI after intravitreal administration bHPCD-CAI were studied undertaken in rabbit. The intravitreal toxicology of bHPCD-CAI was also examined in rat ocular tissue. We observed that CAI treatment of human endothelial cells decreased cell proliferation in a dose dependent manner. In the in vivo tests bHPCD-CAI treatment reduced choroidal neovascular lesion volume, also in a dose-dependent manner. The intravitreal PK of bHPCD-CAI demonstrated that highly efficacious concentrations of CAI are reached in the vitreous compartment. No ocular toxicology was observed with intravitreous injection of CAI. These studies support the potential of developing intravitreal CAI in an bHPCD ocular formulation for treatment of proliferative retinopathies in humans.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号