首页> 美国卫生研究院文献>other >Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: Evidence for PKC activation and oxidative stress-activated signaling pathways
【2h】

Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: Evidence for PKC activation and oxidative stress-activated signaling pathways

机译:自由脂肪酸诱导的肌肉胰岛素抵抗和葡萄糖摄取功能障碍:PKC活化和氧化应激激活信号通路的证据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the present study, we examined the effects of free fatty acids (FFAs) on insulin sensitivity and signaling cascades in the C2C12 skeletal muscle cell culture system. Our data clearly manifested that the inhibitory effects of PKC on insulin signaling may at least in part be explained by the serine/threonine phosphorylation of IRS-1. Both oleate and palmitate treatment were able to increase the Serine307 phosphorylation of IRS-1. IRS-1 Serine307 phosphorylation is inducible which causes the inhibition of IRS-1 tyrosine phosphorylation by either IκB-kinase (IKK) or c-jun N-terminal kinase (JNK) as seen in our proteomic kinases screen. Furthermore, our proteomic data have also manifested that the two FFAs activate the IKKα/β, the stress kinases S6 kinase p70 (p70SK), stress-activated protein kinase (SAPK), JNK, as well as p38 MAP kinase (p38MAPK). On the other hand, the antioxidant, Taurine at 10 mM concentrations was capable of reversing the oleate-induced insulin resistance in myocytes as manifested from the glucose uptake data. Our current data point out the importance of FFA-induced insulin resistance via multiple signaling mechanisms.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号