首页> 美国卫生研究院文献>other >A novel effect of rivastigmine on presynaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimers disease
【2h】

A novel effect of rivastigmine on presynaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimers disease

机译:菌菌菌对胎儿大鼠原发性皮质培养神经变性模型中突触前蛋白和神经元活力的新效果及其在阿尔茨海默病中的含义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Alzheimer's disease (AD) is characterized by deposition of amyloid-beta peptide (Aβ) plaque, disrupted Aβ-precursor protein (APP) metabolism, hyperphosphorylation of Tau leading to neurofibrillary tangles and associated neurotoxicity. Moreover, there is synaptic loss in AD, which occurs early and precedes frank amyloidosis. The central cholinergic system is especially vulnerable to the toxic events associated with AD, and reduced acetylcholine (ACh) levels in specific brain regions is thought to be the central to memory deficits in AD. First-generation cholinesterase inhibitors (ChEIs) have provided only symptomatic relief to patients with AD by prolonging the action of remaining ACh with little or no change in the course of the disease. Some second-generation cholinesterase inhibitors are multi-functional drugs that may provide more than purely palliative results. To evaluate the effects of the dual AChE and butyrylcholinesterase (BuChE) inhibitor rivastigmine on key aspects of AD, embryonic day 16 rat primary cortical cultures were treated with rivastigmine under time and media conditions observed to induce neurodegeneration. Samples were subjected to Western blotting and immunocytochemistry techniques to determine what influence this drug may have on synaptic proteins and neuronal morphology. There was a strong increase in relative cell viability as a result of rivastigmine treatment. Significant dose-dependent increases were observed in the levels of synaptic markers SNAP-25 and synaptophysin, as well as the neuron specific form of enolase. Together with an observed enhancement of neuronal morphology, our results suggest a rivastigmine-mediated novel neuroprotective and/or neurorestorative effects involving the synapse. Our observations may explain the potential for rivastigmine to alter the course of AD, and warrant further investigations into using BuChE inhibition as a therapeutic strategy for AD, especially with regard to restoration of synaptic function.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号