首页> 美国卫生研究院文献>other >Computational studies of NMDA receptors: differential effects of neuronal activity on efficacy of competitive and non-competitive antagonists
【2h】

Computational studies of NMDA receptors: differential effects of neuronal activity on efficacy of competitive and non-competitive antagonists

机译:NmDa受体的计算研究:神经元活性的竞争性和非竞争性拮抗剂的功效差的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

N-Methyl-D-Aspartate receptors (NMDARs) play important physiological as well as pathological roles in the central nervous system (CNS). While NMDAR competitive antagonists, such as D-2-Amino-5-Phosphopentanoic acid (AP5) have been shown to impair learning and memory, the non-competitive antagonist, memantine, is paradoxically beneficial in mild to moderate Alzheimer’s disease (AD) patients. It has been proposed that differences in kinetic properties could account for antagonist functional differences. Here we present a new elaborated kinetic model of NMDARs that incorporates binding sites for the agonist (glutamate) and co-agonist (glycine), channel blockers, such as memantine and magnesium (Mg2+), as well as competitive antagonists. We first validated and optimized the parameters used in the model by comparing simulated results with a wide range of experimental data from the literature. We then evaluated the effects of stimulation frequency and membrane potential (Vm) on the characteristics of AP5 and memantine inhibition of NMDARs. Our results indicated that the inhibitory effects of AP5 were independent of Vm but decreased with increasing stimulation frequency. In contrast, memantine inhibitory effects decreased with both increasing Vm and stimulation frequency. They support the idea that memantine could provide tonic blockade of NMDARs under basal stimulation conditions without blocking their activation during learning. Moreover they underline the necessity of considering receptor kinetics and the value of the biosimulation approach to better understand mechanisms of drug action and to identify new ways of regulating receptor function.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号