首页> 美国卫生研究院文献>other >Microfluidic Preparative Free-Flow Isoelectric Focusing: System Optimization for Protein Complex Separation
【2h】

Microfluidic Preparative Free-Flow Isoelectric Focusing: System Optimization for Protein Complex Separation

机译:微流体制备自由流动异电聚焦:蛋白质复合物分离的系统优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Isoelectric Focusing (IEF) is the first step for two-dimensional (2D) gel electrophoresis and plays an important role in sample purification for proteomics. However, biases in protein size and pI resolution, as well as limitations in sample volume, gel capacity, sample loss, and experimental time, remain challenges. In order to address some of the limitations of traditional IEF, we present a microfluidic free flow IEF (FF-IEF) device for continuous protein separation into 24 fractions. The device reproducibly establishes a nearly linear pH gradient from 4 to 10. Optimized dynamic coatings of 4% poly (vinyl) alcohol (PVA) minimize peak broadening by transverse electrokinetic flows. Even though the device operates at high electric fields (up to 370V/cm) efficient cooling maintains solution temperature inside the separation channel controllably in the range 2 – 25 °C. Protein samples with a dynamic concentration range between µg/mL to mg/mL can be loaded into the micro device at a flow rate of 1 mL/hr and residence time of ~12 min. By using a protein complex of 9 proteins and 13 isoforms, we demonstrate improved separation with the FF-IEF system over traditional 2D gel electrophoresis. Device to device reproducibility is also illustrated through the efficient depletion of the albumin and hemoglobin assays. Post-device sample concentrations result in a 10 to 20-fold increase, which allow for isolation and detection of low abundance proteins. The separation of specific proteins from a whole cell lysate is demonstrated as an example. The micro device has the further benefits of retaining high molecular weight proteins, providing higher yield of protein that has a broader range in pI, and reducing experimental time compared to conventional IEF IGP gel strip approaches.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号