首页> 美国卫生研究院文献>other >One-electron oxidation of DNA by ionizing radiation: competition between base-to-base hole-transfer and hole-trapping
【2h】

One-electron oxidation of DNA by ionizing radiation: competition between base-to-base hole-transfer and hole-trapping

机译:DNa的单电子氧化通过电离辐射:基极 - 基极的空穴传输性和空穴俘获之间的竞争

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The distance of hole migration through DNA determines the degree to which radiation induced lesions are clustered. It is the degree of clustering that confers to ionizing radiation its high toxicity. The migration distance is governed by a competition between hole transfer and irreversible trapping reactions. An important type of trapping is reactions that lead to formation of deoxyribose radicals, which are precursors to free base release (fbr). Using HPLC, fbr was measured in X-irradiated films of d(CGCGCGCGCG)2 and d(CGCGAATTCGCG)2 as well as three genomic DNAs: M. luteus, calf thymus, and C. perfringens. The level of DNA hydration was varied from Γ = 2.5 to 22 mol waters/mol nucleotide. The chemical yields of each base, G(base), were measured and used to calculate the modification factor, M(base). This factor compensates for differences in the GC/AT ratio, providing a measure of the degree to which a given base influences its own release. In the DNA oligomers, M(Gua) > M(Cyt), a result ascribed to the previously observed end effect in short oligomers. In the highly polymerized genomic DNA, we found that M(Cyt) > M(Gua) and that M(Thy) is consistently the smallest of the M factors. For these same DNA films, the yields of total DNA trapped radicals, Gtot(fr), were measured using EPR spectroscopy. The yield of deoxyribose radicals was calculated using GdRib(fr) = ∼0.11 × Gtot(fr). Comparing GdRib(fr) with total free base release, we found that only about half of the fbr is accounted for by deoxyribose radical intermediates. We conclude that for a hole on cytosine, Cyt•+, base-to-base hole transfer competes with irreversible trapping by the deoxyribose. In the case of a hole on thymine, Thy•+, base-to-base hole transfer competes with irreversible trapping by methyl deprotonation. Close proximity of Gua protects the deoxyribose of Cyt but sensitizes the deoxyribose of Thy.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号