首页> 美国卫生研究院文献>other >ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice
【2h】

ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice

机译:Rock1在从心脏肥大转变到小鼠失败的转变中起重要作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pathological cardiac hypertrophy caused by diverse etiologies eventually leads to cardiac dilation and functional decompensation. We have recently reported that genetic deletion of Rho-associated coiled-coil containing protein kinase 1 (ROCK1) inhibited several pathological events including cardiomyocyte apoptosis in compensated hypertrophic hearts. The present study investigated whether ROCK1 deficiency can prevent the transition from hypertrophy to heart failure. Transgenic mice with cardiac-restricted overexpression of Gαq develop compensated cardiac hypertrophy at young ages, but progress into lethal cardiomyopathy accompanied by increased apoptosis after pregnancy or at old ages. The studies were first carried out using age- and pregnancy-matched wild-type (WT), Gαq, ROCK1−/−, and Gαq/ROCK1−/− mice. The potent beneficial effect of ROCK1 deletion is demonstrated by abolishment of peripartum mortality, and significant attenuation of left ventricular (LV) dilation, wall thinning, and contractile dysfunction in the peripartum Gαq transgenic mice. Increase in cardiomyocyte apoptosis was suppressed by ROCK1 deletion, associated with increased extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) activation and inhibition of mitochondrial translocation of Bax. In addition, ROCK1 deficiency also improved survival, inhibited cardiomyocyte apoptosis, and preserved LV dimension and function in old Gαq mice at 12 months. Furthermore, transgenic overexpression of ROCK1 increased cardiomyocyte apoptosis and accelerated hypertrophic decompensation in Gαq hearts in the absence of pregnancy stress. The present study provides for the first time in vivo evidence for the long-term beneficial effects of ROCK1 deficiency in hypertrophic decompensation and suggests that ROCK1 may be an attractive therapeutic target to limit heart failure progression.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号