首页> 美国卫生研究院文献>other >Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s β by Solid-State NMR Spectroscopy
【2h】

Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s β by Solid-State NMR Spectroscopy

机译:铜的分子水平考试+装订结构的淀粉样纤维的40个残基的阿尔茨海默氏症β通过固态核磁共振

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cu2+ binding to Alzheimer’s β (Aβ) peptides in amyloid fibrils has attracted broad attention, as it was shown that Cu ion concentration elevates in Alzheimer’s senile plaque and such association of Aβ with Cu2+ triggers the production of neurotoxic reactive oxygen species (ROS) such as H2O2. However, detailed binding sites and binding structures of Cu2+ to Aβ are still largely unknown for Aβ fibrils or other aggregates of Aβ. In this work, we examined molecular details of Cu2+ binding to amyloid fibrils by detecting paramagnetic signal quenching in 1D and 2D high-resolution 13C SSNMR for full-length 40-residue Aβ(1–40). Selective quenching observed in 13C SSNMR of Cu2+-bound Aβ(1–40) suggested that primary Cu2+ binding sites in Aβ(1–40) fibrils include Nε in His-13 and His-14, and carboxyl groups in Val-40 as well as in Glu side chains (Glu-3, Glu-11, and/or Glu-22). 13C chemical shift analysis demonstrated no major structural changes upon Cu2+ binding in the hydrophobic core regions (residues 18–25 and 30–36). Although the ROS production via oxidization of Met-35 in the presence of Cu2+ has been long suspected, our SSNMR analysis of 13CεH3-S- in M35 showed little changes after Cu2+ binding, excluding the possibility of Met-35 oxidization by Cu2+ alone. Preliminary molecular dynamics (MD) simulations on Cu2+-Aβ complex in amyloid fibrils confirmed binding sites suggested by the SSNMR results and the stabilities of such bindings. The MD simulations also indicate the coexistence of a variety of Cu2+-binding modes unique in Aβ fibril, which are realized by both intra- and inter-molecular contacts and highly concentrated coordination sites due to the in-register parallel β-sheet arrangements.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号