首页> 美国卫生研究院文献>other >The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation
【2h】

The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation

机译:丝轮脚手架制造参数操纵对膀胱增强鼠模型中矩阵性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autologous gastrointestinal segments are utilized as the primary option for bladder reconstructive procedures despite their inherent morbidity and significant complication rate. Multi-laminate biomaterials derived from Bombyx mori silk fibroin and prepared from a gel spinning process may serve as a superior alternative for bladder tissue engineering due to their robust mechanical properties, biocompatibility, and processing plasticity. In the present study, we sought to determine the impact of variations in winding (axial slew rate: 2 and 40 mm/sec) and post-winding (methanol and lyophilization) fabrication parameters on the in vivo performance of gel spun silk scaffolds in a murine model of bladder augmentation. Three silk matrix groups with distinct structural and mechanical properties were investigated following 10 weeks of implantation including our original prototype previously shown to support bladder regeneration, Group 1 (2mm/sec, methanol) as well as Group 2 (40mm/sec, methanol) and Group 3 (40mm/sec, lyophilization) configurations. Non surgical animals were assessed in parallel as controls. Quantification of residual scaffold area demonstrated that while Group 1 and 2 scaffolds were largely intact, processing parameters utilized for Group 3 led to significantly higher degrees of scaffold degradation in comparison to Group 1. Histological (hematoxylin and eosin, masson’s trichrome) and immunohistochemical (IHC) analyses showed comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within the original defect site throughout all matrix groups similar to controls. Parallel evaluations demonstrated transitional urothelial formation with prominent uroplakin and p63 protein expression supported by Group 1 and 3 scaffolds, while Group 2 variants supported a thin, immature epithelium composed primarily of uroplakin-negative, p63-positive basal cells. Voided stain on paper analysis revealed similar voiding patterns between all matrix groups; however Group 2 animals displayed substantially lower voided volumes with increased frequency in comparison to controls. In addition, cystometric assessments revealed all matrix groups supported comparable degrees of bladder compliance similar to control levels. The results of this study demonstrate that selective alterations in winding and post-winding fabrication parameters can enhance the degradation rate of gel spun silk scaffolds in vivo while preserving their ability to support bladder tissue regeneration and function.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号