首页> 美国卫生研究院文献>other >Local unfolding of Cu Zn Superoxide Dismutase monomer determines the morphology of fibrillar aggregates
【2h】

Local unfolding of Cu Zn Superoxide Dismutase monomer determines the morphology of fibrillar aggregates

机译:Cu的局部展开Zn超氧化物歧化酶单体决定了纤维菌聚集体的形态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in Amyotrophic Lateral Sclerosis (ALS) patients. The fibrillar aggregates formed by wildtype and various disease-associated mutants have recently been found to have distinct cores and morphologies. Previous computational and experimental studies of wildtype SOD1 suggest that the apo-monomer, highly aggregation-prone, displays substantial local unfolding dynamics. The residual folded structure of locally unfolded apoSOD1 corresponds to peptide segments forming the aggregation core as identified by a combination of proteolysis and mass spectroscopy. Therefore, we hypothesize that the destabilization of apoSOD1 caused by various mutations leads to distinct local unfolding dynamics. The partially unfolded structure, exposing the hydrophobic core and backbone hydrogen bond donors and acceptors, is prone to aggregate. The peptide segments in the residual folded structures form the “building block” for aggregation, which in turn determines the morphology of the aggregates. To test this hypothesis, we apply a multiscale simulation approach to study the aggregation of three typical SOD1 variants: wildtype, G37R, and I149T. Each of these SOD1 variants has distinct peptide segments forming the core structure and features different aggregate morphologies. We perform atomistic molecular dynamics simulations to study the conformational dynamics of apoSOD1 monomer, and coarse-grained molecular dynamics simulations to study the aggregation of partially unfolded SOD1 monomers. Our computational studies of monomer local unfolding and the aggregation of different SOD1 variants are consistent with experiments, supporting the hypothesis of the formation of aggregation “building blocks” via apo-monomer local unfolding as the mechanism of SOD1 fibrillar aggregation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号