首页> 美国卫生研究院文献>other >Regulation of Inositol 145-Trisphosphate Receptor Function During Mouse Oocyte Maturation
【2h】

Regulation of Inositol 145-Trisphosphate Receptor Function During Mouse Oocyte Maturation

机译:小鼠卵母细胞成熟期间调节肌醇145-三磷酸磷酸盐受体功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

At the time of fertilization, an increase in the intracellular Ca2+ concentration ([Ca2+]i) underlies egg activation and initiation of development in all species studied to date. The inositol 1,4,5-trisphosphate receptor (IP3R1), which is mostly located in the endoplasmic reticulum (ER) mediates the majority of this Ca2+ release. The sensitivity of IP3R1, i.e. its Ca2+ releasing capability, is increased during oocyte maturation so that the optimum [Ca2+]i response concurs with fertilization, which in mammals occurs at metaphase of second meiosis. Multiple IP3R1 modifications affect its sensitivity, including phosphorylation, sub-cellular localization and ER Ca2+ concentration ([Ca2+]ER). Here we evaluated using mouse oocytes how each of these factors affected IP3R1 sensitivity. The capacity for IP3-induced Ca2+ release markedly increased at the germinal vesicle breakdown stage, although oocytes only acquire the ability to initiate fertilization-like oscillations at later stages of maturation. The increase in IP3R1 sensitivity was underpinned by an increase in [Ca2+]ER and receptor phosphorylation(s) but not by changes in IP3R1 cellular distribution, as inhibition of the former factors reduced Ca2+ release, whereas inhibition of the latter had no impact. Therefore, the results suggest that the regulation of [Ca2+]ER and IP3R1 phosphorylation during maturation enhance IP3R1 sensitivity rendering oocytes competent to initiate oscillations at the expected time of fertilization. The temporal discrepancy between the initiation of changes in IP3R1 sensitivity and acquisition of mature oscillatory capacity suggest that other mechanisms that regulate Ca2+ homeostasis also shape the pattern of oscillations in mammalian eggs.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号