首页> 美国卫生研究院文献>other >FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging
【2h】

FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging

机译:基于FpGa可重构处理器的超快隔行超声和光声成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.
机译:本文以我们的知识为实际隔行的共同登记超声和光声成像的实时交错的共同登记和光声成像和应用于成像肿瘤动态响应的实时交错的可重新配置处理器的独特现场可编程门阵列(FPGA)。 FPGA用于控制,获取,存储,延迟和总和,并传输数据以进行实时共同注册的成像。 FPGA控制包含所有必要的模拟和数字电路的定制的16通道模块的超声传输和超声波和光声数据采集处理。 16通道模块是插入主板的多个模块之一;它们的波束成形输出可用于使用外部存储器接口(EMIF)访问数字信号处理器(DSP)。 FPGA通过超快重新配置和适应其结构来执行关键作用,以允许两种成像模式之间的实时切换,包括传输控制,激光同步,内部存储器结构,波束成形和EMIF结构和存储器尺寸。它通过并行访问内部存储器和多线程处理来执行另一种作用,以减少数据的传输和DSP上的处理负荷。此外,由于即使在超声波脉冲回波采集期间,激光器也会脉冲,所以FPGA确保激光脉冲通过适当的时分复用(TDM)从脉冲回波采集非常远。构建了由四个FPGA模块(64通道)组成的共登记的超声和光声成像系统,并使用Phantom靶和体内小鼠肿瘤模型来证明其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号